1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vagabundo [1.1K]
3 years ago
12

The electric potential difference between the ground and a cloud in a particular thunderstorm is 2.5 × 109 V. What is the magnit

ude of the change in the electric potential energy of an electron that moves between the ground and the cloud?
Physics
1 answer:
muminat3 years ago
6 0

Answer:

U = - 4 x 10^{-10}

Explanation:

ΔV = potential difference = 2.5 * 10^9 Volts

q = charge on electron = -1.6 * 10^{-19} C

electric potential energy is given as

U = q ΔV = ( -1.6 * 10^{-19}  ) ( 2.5 * 10^9  )

               = - 4 x 10^{-10}

You might be interested in
A 50 N girl climbs the flight of stairs in 3 seconds. How much work does she
kvv77 [185]
She uses 0 power because she simply has no gas left. She used all of it getting a 50 pc McDonald’s nugget with a side of ranch and a medium fry and a large water.
7 0
3 years ago
Which of the following intermolecular forces explains why iodine (I2) is a solid at room temperature?
egoroff_w [7]
"Dispersion forces" is the one intermolecular force among the following choices given in the question that <span>explains why iodine (I2) is a solid at room temperature. The correct option among all the options that are given in the question is the third option or the penultimate option. I hope that the answer has helped you.</span>
3 0
4 years ago
How much work must be done to bring three electrons from a great distance apart to 3.0×10−10 m from one another (at the corners
Natasha_Volkova [10]

Answer:

Potential\ Energy=Work \ Done=2.301*10^{-18} J

Work  done to bring three electrons from a great distance apart to 3.0×10−10 m from one another (at the corners of an equilateral triangle) is 2.301*10^{-18} Joules

Explanation:

The potential energy is given by:

U=Q*V

where:

Q is the charge

V is the potential difference

Potential Difference=V=\frac{kq}{r}

So,

Potential\ Energy=\frac{Qkq}{r} \\Q=q\\Potential\ Energy=\frac{kq^2}{r}

Where:

k is Coulomb Constant=8.99*10^9 Nm^2/C^2

q is the charge on electron=-1.6*10^-19 C

r is the distance=3.0*10^{-10}m

For 3 Electrons Potential Energy or work Done is:

Potential\ Energy=3*\frac{kq^2}{r}

Potential\ Energy=3*\frac{(8.99*10^9)(-1.6*10^{-19})^2}{3*10^{-10}}\\Potential\ Energy=2.301*10^{-18} J

Work  done to bring three electrons from a great distance apart to 3.0×10−10 m from one another (at the corners of an equilateral triangle) is 2.301*10^{-18} Joules

7 0
3 years ago
A 600 kg car is at test and then accelerated to 5m/s , what is its original kinetic energy
ycow [4]

Answer:

0 J

Explanation:

Kinetic energy is defined as:

KE = 1/2 m v²

where m is mass and v is velocity.

The car starts at rest, so it has zero velocity.  Therefore, its initial kinetic energy is 0 J.

3 0
3 years ago
A very long insulating cylinder has radius R and carries positive charge distributed throughout its volume. The charge distribut
blsea [12.9K]

Answer:

1.E(r) = \frac{\alpha}{4\pi \epsilon_0}(2 - \frac{r}{R})

2.E(r) = \frac{1}{4\pi \epsilon_0}\frac{\alpha R}{r}

3.The results from part 1 and 2 agree when r = R.

Explanation:

The volume charge density is given as

\rho (r) = \alpha (1-\frac{r}{R})

We will investigate this question in two parts. First r < R, then r > R. We will show that at r = R, the solutions to both parts are equal to each other.

1. Since the cylinder is very long, Gauss’ Law can be applied.

\int {\vec{E}} \, d\vec{a} = \frac{Q_{enc}}{\epsilon_0}

The enclosed charge can be found by integrating the volume charge density over the inner cylinder enclosed by the imaginary Gaussian surface with radius ‘r’. The integration of E-field in the left-hand side of the Gauss’ Law is not needed, since E is constant at the chosen imaginary Gaussian surface, and the area integral is

\int\, da = 2\pi r h

where ‘h’ is the length of the imaginary Gaussian surface.

Q_{enc} = \int\limits^r_0 {\rho(r)h} \, dr = \alpha h \int\limits^r_0 {(1-r/R)} \, dr = \alpha h (r - \frac{r^2}{2R})\left \{ {{r=r} \atop {r=0}} \right. = \alpha h (\frac{2Rr - r^2}{2R})\\E2\pi rh = \alpha h \frac{2Rr - r^2}{2R\epsilon_0}\\E(r) = \alpha \frac{2R - r}{4\pi \epsilon_0 R}\\E(r) = \frac{\alpha}{4\pi \epsilon_0}(2 - \frac{r}{R})

2. For r> R, the total charge of the enclosed cylinder is equal to the total charge of the cylinder. So,

Q_{enc} = \int\limits^R_0 {\rho(r)h} \, dr = \alpha \int\limits^R_0 {(1-r/R)h} \, dr = \alpha h(r - \frac{r^2}{2R})\left \{ {{r=R} \atop {r=0}} \right. = \alpha h(R - \frac{R^2}{2R}) = \alpha h\frac{R}{2} \\E2\pi rh = \frac{\alpha Rh}{2\epsilon_0}\\E(r) = \frac{1}{4\pi \epsilon_0}\frac{\alpha R}{r}

3. At the boundary where r = R:

E(r=R) = \frac{\alpha}{4\pi \epsilon_0}(2 - \frac{r}{R}) = \frac{\alpha}{4\pi \epsilon_0}\\E(r=R) = \frac{1}{4\pi \epsilon_0}\frac{\alpha R}{r} = \frac{\alpha}{4\pi \epsilon_0}

As can be seen from above, two E-field values are equal as predicted.

4 0
4 years ago
Other questions:
  • How are igneous rocks formed?<br> step by step please.
    5·1 answer
  • Thr frequency of a wave traveling throught the air of a hot, dry desert is 1,200 hertz. Its wavelength is 0.300 meters. What is
    13·1 answer
  • Darby is taking a hike. She sees a pile of broken rocks near the base of a cliff. The area is a dangerous place for _____. glaci
    10·2 answers
  • Which of the falling animals filter feeds?
    12·2 answers
  • Most offshore drilling occurs:
    8·1 answer
  • You are considering developing a new food-chopping appliance which uses an Arduino with a touchscreen to control the motor. You
    10·1 answer
  • A particle with charge 8 µC is located on the
    7·1 answer
  • SOS HELP ME
    12·1 answer
  • un movil que parte del reposo alcanza una velocidad de 75 m/s en 13 segundos ¿cual su aceleracion y el espacio que recorrio en l
    7·1 answer
  • When bill butcher of port city brews discusses shelf space and the way that a merger could increase the leverage potential of la
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!