Answer:
Steven has to row at a speed to reach the same horizontal spot at the other side of the river is, V = 6 m/s
Explanation:
Given data,
The river flowing south at the rate, v = 3 m/s
To reach the other side directly across the river, he aims the raft, Ф = 30°
The speed of his raft across the river is given by the formula,
V = v / Sin Ф
= 3 / Sin 30°
= 6 m/s
Steven has to row at a speed to reach the same horizontal spot at the other side of the river is, V = 6 m/s
Power is equal to energy per unit time. In this case, power is proportional to energy while is inversely proportional to time,on the other hand. Given the two swimmers exerts same amount of energy but the faster swimmer just does things in faster time, then the faster swimmer should develop more power from shorter time
Answer:
40479.6 J
Explanation:
Applying,
q = cm(t₂-t₁).................... Equation 1
Where q = change in heat content of the system, c = specific heat capacity of the system, m = mass of the system, t₁ = initial temperature, t₂ = final temperature.
From the question,
Given: m = 79 g = 0.079 kg, t₁ = 21°C, t₂ = 143°C
Constant: c = 4200 J/kg.°C
Substitute these values into equation 1
q = 4200(0.079)(143-21)
q = 331.8(122)
q = 40479.6 J
A: a person sitting on a train
Hence person could have a meal and not get food all over them.
ANSWER

EXPLANATION
Parameters given:
Mass of the student, M = 70 kg
Mass of the textbook, m = 1 kg
Distance, r = 1 m
To find the gravitational force acting between the student and the textbook, apply the formula for gravitational force:

where G = gravitational constant
Therefore, the gravitational force acting between the student and the textbook is:

That is the answer.