39/8. When you change this to an improper fraction, that is what you get.
If the measure of angle θ is 3π/4, the true statements are:
- sin(θ) = √2/2.
- The measure of the reference angle is 45°.
<h3>How to determine the true statements?</h3>
In Trigonometry, an angle with a magnitude of 3π/4 (radians) is equivalent to 135° (degrees) and it's found in the second quarter. Thus, we would calculate the reference angle for θ in second quarter as follows:
Reference angle = 180 - θ
Reference angle = 180 - 135
Reference angle = 45°.
Also, a terminal point for this angle θ is given by (-√2/2, √2/2) which corresponds to cosine and sine respectively. This ultimately implies that sin(θ) = √2/2.
tan(θ) = cos(θ)/sin(θ)
tan(θ) = [(-√2/2)/(√2/2)]
tan(θ) = -1
In conclusion, we can logically deduce that only options A and B are true statements.
Read more on terminal point here: brainly.com/question/4256586
#SPJ1
Complete Question:
If the measure of angle θ is 3π/4, which statements are true. Select all the correct answers.
A. sin(θ)=sqrt2/2
B. The measure of the reference angle is 45
C. The measure of the reference angle is 30
D. The measure of the reference angle is 60
E. cos(θ)=sqrt2/2
F. tan(θ)=1
28^2=784
29^2=841
784<830<841
therefore sqrt784<sqrt830<sqrt841
therefore 28<sqrt830<29
Done!
Answer:
63 pages are filled with photos.
Step-by-step explanation:
900 photos with 9 photos a page 900/9=100
100 pages
37% of 100 is 37
100-37 is 63