Answer:
False
Step-by-step explanation:
the domain is the set of numbers you can plug in, and the range is what comes out
4 is shown in both ovals, but we see that there is no arrow pointing from the left oval to the 4 in the right oval, meaning that no value in interval [1,5] has a value of 4.
Check the picture below.
doesn't that make it just a 20 x 14? well, surely you know what that area is.
Answer:
a. Relative Growth rate = 10% (6/60 * 100)
b. Number of cells after t hours = 50 * 1.1^t
c. Rate of growth after 6 hours = 77.2% (1.1⁶ - 1)
d. The number of cells after 6 hours is
= 89 cells
Step-by-step explanation:
A cell divides into two cells every 20 minutes
In one hour, the cell will divide into 60/20 * 2 = 6 cells
Each cell growth 6 cells per hour
Initial population of a culture = 50 cells
t = time in hours
a. Relative Growth rate = 10% (6/60 * 100)
b. Number of cells after t hours = 50 * 1.1^t
c. Rate of growth after 6 hours = 77.2% (1.1⁶ - 1)
d. The number of cells after 6 hours = initial population * growth factor
= 50 * 1.772
= 88.6
= 89 cells
Answer:
11 years approx
Step-by-step explanation:
Given data
P=$1000
A=2000
R=6.5%
T= ?
Calculate time, solve for t
t = ln(A/P) / r
substitute
t=ln(2000/1000)/0.065
t=ln(2)/0.065
t=0.693/0.065
t=10.66
Hence the time is 11 years approx
Answer:

Step-by-step explanation:
Consider the revenue function given by
. We want to find the values of each of the variables such that the gradient( i.e the first partial derivatives of the function) is 0. Then, we have the following (the explicit calculations of both derivatives are omitted).


From the first equation, we get,
.If we replace that in the second equation, we get

From where we get that
. If we replace that in the first equation, we get

So, the critical point is
. We must check that it is a maximum. To do so, we will use the Hessian criteria. To do so, we must calculate the second derivatives and the crossed derivatives and check if the criteria is fulfilled in order for it to be a maximum. We get that


We have the following matrix,
.
Recall that the Hessian criteria says that, for the point to be a maximum, the determinant of the whole matrix should be positive and the element of the matrix that is in the upper left corner should be negative. Note that the determinant of the matrix is
and that -10<0. Hence, the criteria is fulfilled and the critical point is a maximum