Stephen`s Law:
P = (Sigma) · A · e · T^4
P in = P out
e = 1 for blacktop;
1150 W = (Sigma) · T^4
(Sigma) = 5.669 · 10 ^(-8) W/m²K^4
T^4 = 1150 : ( 5.669 · 10^(-8) )
T^4 = 202.875 · 10^8
![T = \sqrt[4]{202.857 * 10 ^{8} }](https://tex.z-dn.net/?f=T%20%3D%20%20%5Csqrt%5B4%5D%7B202.857%20%2A%2010%20%5E%7B8%7D%20%7D%20)
T = 3.774 · 10² =
377.4 KAnswer: Equilibrium temperature is 377.4 K.
Answer:
The asteroid's acceleration at this point is
Explanation:
The equation that governs the trajectory of asteroid is given by :

The velocity of asteroid is given by :

At some point during the trip across the screen, the asteroid is at rest. It means, v = 0
So,
Acceleration,
Put t = 0.971 s

So, the asteroid's acceleration at this point is
and it is decelerating.
Out of the given options, weight is influenced by mass and gravity
Answer: Option A
<u>Explanation:
</u>
The object's mass is defined as the quantity of a matter with which the object is formed. It can change its state of matter but the quantity will remain the same. However, the weight is defined as how much force gravity exerts on the object's mass to pull it.
The mass is always same irrespective the location but the weight may vary from one place to the other while talking for the bigger picture. For example, the object's weight may be 60 kg on Earth but when it is measured on the moon, it will be lesser.
The weight of an object generally has nothing doing with the volume and it doesn't depend solely on the gravitational pull. The mass plays a crucial role.


<u>Explanation</u>:
According to Newton's third law that each force has an equal and opposite reaction force in this case both of the jars will exert the same force an each other
. The force is given by

Where, F = force,
,
,
and Distance(r) = 0.42 m.
Substitute the values in the formula.




Wavelength is defined as distance between two troughs or two crests !!
so in this wavelength is 4 metres !!