Step-by-step explanation:
Hey there!
<u>Firstly </u><u>find </u><u>slope </u><u>of</u><u> the</u><u> </u><u>given</u><u> equation</u><u>.</u>
Given eqaution is: 3x + 2y = 5.......(i)
Now;


Therefore, slope (m1) = -3/2.
As per the condition of parallel lines,
Slope of the 1st eqaution (m1) = Slope of the 2nd eqaution (m2) = -3/2.
The point is; (-2,-3). From the above solution we know that the slope is (-3/2). So, the eqaution of a line which passes through the point (-2,-3) is;
(y-y1) = m2 (x-x1)
~ Keep all values.

~ Simplify it.



Therefore, the eqaution of the line which passes through the point (-2,-3) and parallel to 3x + 2y= 5 is 3x + 2y +12 =0.
<em><u>Hope </u></em><em><u>it</u></em><em><u> helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
No solution
Step-by-step explanation:
-3x-9=-3x-3-5
-3x-9=-3x-8
-9=-8
Let's solve this problem step-by-step.
STEP-BY-STEP EXPLANATION:
Let's first establish that triangle BCD is a right-angle triangle.
Therefore, we can use Pythagoras theorem to find BC and solve this problem. Pythagoras theorem is displayed below:
a^2 + b^2 = c^2
Where c = hypotenus of right-angle triangle
Where a and c = other two sides of triangle
Now we can solve the problem by substituting the values from the problem into the Pythagoras theorem as displayed below:
Let a = BC
b = DC = 24
c = DB = 26
a^2 + b^2 = c^2
a^2 + 24^2 = 26^2
a^2 = 26^2 - 24^2
a = square root of ( 26^2 - 24^2 )
a = square root of ( 676 - 576 )
a = square root of ( 100 )
a = 10
Therefore, as a = BC, BC = 10.
If we want to check our answer, we can substitute the value of ( a ) from our answer in conjunction with the values given in the problem into the Pythagoras theorem. If the left-hand side is equivalent to the right-hand side, then the answer must be correct as displayed below:
a = BC = 10
b = DC = 24
c = DB = 26
a^2 + b^2 = c^2
10^2 + 24^2 = 26^2
100 + 576 = 676
676 = 676
FINAL ANSWER:
Therefore, BC is equivalent to 10.
Please mark as brainliest if you found this helpful! :)
Thank you and have a lovely day! <3
To solve this question all you have to do is input the X and y coordinates and test each point in the question. To see which of those points. Have the left hand side equal to the right hand side after doing all of the operations.