I believe that the answer is B
Formula:
Minimum = first element of set
First Quartile = (n+1)/4
Median = (n+1)/2
Third Quartile = 3(n+1)/4
Maximum = Last element of set.
Solution:<span>
The five number summary of ( 90, 85, 97, 76, 89, 58, 82, 102, 70, and 67) is,
Minimum = 58
First Quartile = 70
Median: = 83.5
Third Quartile = 90
Maximum = 102</span>
Answer: It's (3,-2)
Step-by-step explanation:
Answer:
The probability is 0.8
Step-by-step explanation:
The key to answering this question is considering the fact that the two married employees be treated as a single unit.
Now what this means is that we would be having 8 desks to assign.
Mathematically, the number of ways to assign 8 desks to 8 employees is equal to 8!
Now, the number of ways the couple can interchange their desks is just 2 ways
Thus, the number of ways to assign desks such that the couple has adjacent desks is 2(8!)
The number of ways to assign desks among all six employees randomly is 9!
Thus, the probability that the couple will have adjacent desks would be ;
2(8!)/9! = 2/9
This means that the probability that the couple have non adjacent desks is 1-2/9 = 7/9 = 0.77778
Which is 0.8 to the nearest tenth of a percent
So, to find the solution to this problem, we will we using pretty much the same method we used in your previous question. First, let's find the area of the rectangle. The area of a rectangle is length x width. The length in this problem is 16 and the width is 3, and after multiplying these together, we have found 48 in^2 to be the area of the square. Next, we can find the area of the trapezoid. The area of a trapezoid is ((a+b)/2)h where a is the first base, b is the second base, and h is the height. In this problem, a=16, b=5, and h=10. So, all we have to do is plug these values into the area formula. ((16+5)/2)10 = (21/2)10 = 105. So, the area of the trapezoid is 105 in^2. Now after adding the two areas together (48in^2 and 105in^2), we have found the solution to be 153in^2. I hope this helped! :)