f^-1(x) = sq.rt 5(x - 10)/5, sq.rt 5(x - 10)/5 is the inverse of y = 5x^2 +10
Step-by-step explanation:
interchanging the variables
x = 5y^2 + 10
5y^2 +10 = x
5y^2 = x - 10
dividing by 5
5y^2/5 = x/5 + -10/5
y^2 = x/5 + - 10/5
y^2 = x/5 - 2
y = 5 (x-10) 0/5 (sq.rt)
g(5x^2 + 10) = 5x/5
g(5x^2 + 10) = x
f^-1(x) = sq.rt 5(x - 10)/5, sq.rt 5(x - 10)/5 is the inverse of y = 5x^2 +10
Answer:
y=2x+1, assuming my change in the reported data was correct.
Step-by-step explanation:
The data for x had one more entry than the values for y. I removed the second "0" so that the x and y points line up, as shown in the attached image. The data indicate a straight line, with a slope of 2 (y increases by 2 for every x increase of 1). The y-intercept is 1, as per the first data point (0,1).
Answer:
it is d
Step-by-step explanation:
Answer:
4.013
4.13
4.1352
4.2
Step-by-step explanation: