Answer:
a. E(x) = 3.730
b. c = 3.8475
c. 0.4308
Step-by-step explanation:
a.
Given
0 x < 3
F(x) = (x-3)/1.13, 3 < x < 4.13
1 x > 4.13
Calculating E(x)
First, we'll calculate the pdf, f(x).
f(x) is the derivative of F(x)
So, if F(x) = (x-3)/1.13
f(x) = F'(x) = 1/1.13, 3 < x < 4.13
E(x) is the integral of xf(x)
xf(x) = x * 1/1.3 = x/1.3
Integrating x/1.3
E(x) = x²/(2*1.13)
E(x) = x²/2.26 , 3 < x < 4.13
E(x) = (4.13²-3²)/2.16
E(x) = 3.730046296296296
E(x) = 3.730 (approximated)
b.
What is the value c such that P(X < c) = 0.75
First, we'll solve F(c)
F(c) = P(x<c)
F(c) = (c-3)/1.13= 0.75
c - 3 = 1.13 * 0.75
c - 3 = 0.8475
c = 3 + 0.8475
c = 3.8475
c.
What is the probability that X falls within 0.28 minutes of its mean?
Here we'll solve for
P(3.73 - 0.28 < X < 3.73 + 0.28)
= F(3.73 + 0.28) - F(3.73 + 0.28)
= 2*0.28/1.3 = 0.430769
= 0.4308 -- Approximated
Lagrange multipliers:







(if

)

(if

)

(if

)
In the first octant, we assume

, so we can ignore the caveats above. Now,

so that the only critical point in the region of interest is (1, 2, 2), for which we get a maximum value of

.
We also need to check the boundary of the region, i.e. the intersection of

with the three coordinate axes. But in each case, we would end up setting at least one of the variables to 0, which would force

, so the point we found is the only extremum.
If 19 out of 28 renters keep a pet, there are
renters who don't keep a pet.
Whenever you have a subset of some set, and you want to know which percentage of the set the subset represents, you simply have to compute

So, in your case, you're wondering what percentage of 28 does 9 represent. So, the formula becomes

Answer:
D
Step-by-step explanation:
ABCD is the same as JKML
M=D