Answer:
F = 1.63 x 10⁻⁹ N
Explanation:
Complete question is as follows:
The diagram below shows two bowling balls, A and B, each having a mass of 7.0 kg, placed 2.00 m apart between their centers. Find the magnitude of Gravitational Force?
Answer:
The gravitational force is given by Newton's Gravitational Law as follows:
F = Gm₁m₂/r²
where,
F = Gravitational Force = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
m₁ = m₂ = mass of each ball = 7 kg
r = distance between balls = 2 m
Therefore,
F = (6.67 x 10⁻¹¹ N.m²/kg²)(7 kg)(7 kg)/(2 m)²
<u>F = 1.63 x 10⁻⁹ N</u>
Seems to me that it flies 400 m/s there and 600 m/s back the same distance.
therefore the average of 400 and 600 is 500 m/s. The distance is the same so the normal formula of (d2-d1)/(t2-t1) is applicable.
The tilt of the moon's axis does not allow for monthly alignment, so the lunar and solar eclipse do not happen every month.
<h3>How do the lunar and solar eclipse occur?</h3>
- For the occurrence of lunar and solar eclipse, the sun, moon and the earth must remain in a plan and along a straight line.
- When the earth appears in between the sun and the moon, lunar eclipse occurs.
- When the moon appears in between the sun and the earth, solar eclipse occurs.
- The moon and earth are rotating not only around the sun, but also around the black hole of Milky way galaxy.
- So they are not present in a plan as well as in a straight line in every full moon and new moon time.
Thus, we can conclude that the option D is correct.
Learn more about the lunar eclipse and solar eclipse here:
brainly.com/question/8643
#SPJ1
Answer:
At the center of the object
At the end of the object farthest away from the ground
At the center of gravity of the object
At end of the object closest to the ground
Explanation: