Answer:
Just be yourself.
Step-by-step explanation:
You might get different answers, but this one is something you should definitely do!
Hope this helped...have a great day <3
Answer:
a) P ( 3 ≤X≤ 5 ) = 0.02619
b) E(X) = 1
Step-by-step explanation:
Given:
- The CDF of a random variable X = { 0 , 1 , 2 , 3 , .... } is given as:
Find:
a.Calculate the probability that 3 ≤X≤ 5
b) Find the expected value of X, E(X), using the fact that. (Hint: You will have to evaluate an infinite sum, but that will be easy to do if you notice that
Solution:
- The CDF gives the probability of (X < x) for any value of x. So to compute the P ( 3 ≤X≤ 5 ) we will set the limits.

- The Expected Value can be determined by sum to infinity of CDF:
E(X) = Σ ( 1 - F(X) )

E(X) = Limit n->∞ [1 - 1 / ( n + 2 ) ]
E(X) = 1
20/36 reduced is 5/9. hope this helped! :)
Answer:
a) true
Step-by-step explanation:
The bottom-line numbers from synthetic division <em>alternate signs</em>, indicating that -2 is a lower bound. The given statement is true.
__
If the signs were all positive, it would indicate the proposed zero is an <em>upper bound</em>.
__
A graph shows all real zeros are greater than -2.
Ok! So, given a quadratic function<span>, </span>y<span> = ax</span>2<span> + bx + c, when "a" is positive, the </span>parabola <span>opens upward and the vertex is the minimum value. On the other hand, if "a" is negative, the graph opens downward and the vertex is the maximum value. Now, let's refer back to our original graph, </span>y<span> = </span><span>x2</span><span>, where "a" is 1.
Hope this helps.</span>