The theoretical probaility of drawing an ace from a shuffled deck of playing cards is 1/13.
According to the given question.
A card is drawn from a shuffled standard deck.
Since, the total number of cards in a shuffled standard deck = 52
And, the total number of aces in a shuffled standard deck = 4
As, we know that "the theoretical probability of an event is the number of desired outcomes divided by all possible outcomes".
Therefore, the theoretical probabability of drawing an ace from a shuffled deck of playing cards
= 4/52
= 1/13
Hence, the theoretical probaility of drawing an ace from a shuffled deck of playing cards is 1/13.
Find out more information about theoretical probability here:
brainly.com/question/24037367
#SPJ4
Answer:
A)3
Step-by-step explanation:
Answer:
<em>g(</em><em>x)</em><em> </em><em>=</em><em> </em><em>-4g(</em><em>x)</em><em> </em><em>=</em><em> </em><em>-x+</em><em>4</em>
<em>=</em><em> </em><em>g(</em><em>5</em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em>4</em><em>(</em><em>5</em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em>(</em><em>5</em><em>)</em><em>+</em><em>4</em>
<em>=</em><em> </em><em>g(</em><em>5</em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em>2</em><em>0</em><em> </em><em>=</em><em> </em><em>-</em><em>1</em>
Answer:
5
Step-by-step explanation:
"one" will fill both blanks.