Given the following complex numbers, we are to expressed them in the form of a+bi where a is the real part and b is the imaginary part of the complex number.
1) (2-6i)+(4+2i)
open the parenthesis
= 2-6i+4+2i
collect like terms
= 2+4-6i+2i
= 6-4i
2) (6+5i)(9-2i)
= 6(9)-6(2i)+9(5i)-5i(2i)
= 54-12i+45i-10i²
= 54+33i-10i²
In complex number i² = -1
= 54+33i-10(-1)
= 54+33i+10
= 54+10+33i
= 64+33i
3) For the complex number 2/(3-9i), we will rationalize by multiplying by the conjugate of the denominator i.e 3+9i
The trigonometric values for cos are C = A/H, which means that to find cos(60), you need to divide the adjacent side by the hypotenuse, which in this case gives you 1/2, so that is the value of cos(60).