
<h3><u>Correct </u><u>Question </u><u>:</u><u>-</u></h3>
What is the 5th term of an AP 2 , 14 ....98 .
<h3><u>Given </u><u>:</u><u>-</u><u> </u></h3>
<u>We </u><u>have </u><u> </u><u>AP</u><u>, </u>

- <u>AP </u><u>is </u><u>the </u><u>arithmetic </u><u>progression </u><u>or </u><u>a </u><u>sequence </u><u>of </u><u>numbers </u><u>in </u><u>which </u><u>succeeding </u><u>number </u><u>is </u><u>differ </u><u>from </u><u>preceeding </u><u>number </u><u>by </u><u>a </u><u>common </u><u>value</u><u>. </u>
<h3><u>Solution </u><u>:</u><u>-</u></h3>
<u>We </u><u>have </u><u>an </u><u>AP </u><u>:</u><u>-</u><u> </u><u>2</u><u> </u><u>,</u><u> </u><u>1</u><u>4</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>9</u><u>8</u>
<u>Therefore</u><u>, </u>
<u>Here</u><u>, </u>
Common difference of an AP



Thus, The common difference is 12
<u>Now</u><u>, </u>
We know that,





Hence, The 5th term of given AP is 50
6n+1 = 25
subtract 1 from each side
6n+1-1 = 25-1
6n = 24
divide each side by 6
6n/6 = 24/6
n =4
The expressions have the same expansion I'd say because the pairs 2 and 30, 3 and 20, and 4 and 15 because they are all equivalent to 60 because they are all factors of 60.
Same goes with the other pairs, because they are all equivalent to 48 because they are all factors of 48.