Answer:
Option A. 1 bar = 1 atm
Explanation:
Pressure has various units of measurement. Each unit of measurement can be converted to other units of measurement. For example:
1 atm = 1 bar
1 atm = 760 mmHg
1 atm = 760 torr
1 atm = 1×10⁵ N/m²
1 atm = 1×10⁵ Pa
With the above conversion scale we can convert from one unit to the other.
Considering the question given above, it is evident from the coversion scale illustrated above that only option A is correct.
Thus,
1 bar = 1 atm
..... equal to the force from the engine pushing the car forward.
That's why the car is not accelerating. The horizontal forces on it
are balanced.
Answer:
True
Explanation:
I guess you made a mistake on question.
but I understood what you wanted to say.
Hope this helps... :)
Given that : d = 5sin(pi t/4), So, maximum displacement, d = 5*(+1) = 5 Also, maximum displacement, d = 5*(-1) = -5
The toy rocket is launched vertically from ground level, at time t = 0.00 s. The rocket engine provides constant upward acceleration during the burn phase. At the instant of engine burnout, the rocket has risen to 72 m and acquired a velocity of 30 m/s. The rocket continues to rise in unpowered flight, reaches maximum height, and falls back to the ground with negligible air resistance.
The total energy of the rocket, which is a sum of its kinetic energy and potential energy, is constant.
At a height of 72 m with the rocket moving at 30 m/s, the total energy is m*9.8*72 + (1/2)*m*30^2 where m is the mass of the rocket.
At ground level, the total energy is 0*m*9.8 + (1/2)*m*v^2.
Equating the two gives: m*9.8*72 + (1/2)*m*30^2 = 0*m*9.8 + (1/2)*m*v^2
=> 9.8*72 + (1/2)*30^2 = (1/2)*v^2
=> v^2 = 11556/5
=> v = 48.07
<span>The velocity of the rocket when it impacts the ground is 48.07 m/s</span>