Answer: D. They are the coldest stars.
Explanation:
I feel like it is d . :) it could be a too so idrk
Answer:
The tank is losing

Explanation:
According to the Bernoulli’s equation:
We are being informed that both the tank and the hole is being exposed to air :
∴ P₁ = P₂
Also as the tank is voluminous ; we take the initial volume
≅ 0 ;
then
can be determined as:![\sqrt{[2g (h_1- h_2)]](https://tex.z-dn.net/?f=%5Csqrt%7B%5B2g%20%28h_1-%20h_2%29%5D)
h₁ = 5 + 15 = 20 m;
h₂ = 15 m
![v_2 = \sqrt{[2*9.81*(20 - 15)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%2820%20-%2015%29%5D)
![v_2 = \sqrt{[2*9.81*(5)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%285%29%5D)
as it leaves the hole at the base.
radius r = d/2 = 4/2 = 2.0 mm
(a) From the law of continuity; its equation can be expressed as:
J = 
J = πr²
J =
J =
b)
How fast is the water from the hole moving just as it reaches the ground?
In order to determine that; we use the relation of the velocity from the equation of motion which says:
v² = u² + 2gh
₂
v² = 9.9² + 2×9.81×15
v² = 392.31
The velocity of how fast the water from the hole is moving just as it reaches the ground is : 

The vertical component of the velocity after the given time is -9.8 m/s while the horizontal component of the velocity is 16 m/s.
The given parameters;
- initial horizontal velocity, vₓ = 16 m/s
- initial vertical velocity,

- time interval 1 seconds
The components of the velocity can be horizontal or vertical velocity.
The vertical component of the velocity is affected by acceleration due to gravity while the horizontal component of the velocity is not affected by gravity.
The vertical component of the velocity is calculated as;

The horizontal component of the velocity is constant since it is not affected by gravity.
The horizontal component of the velocity = 16 m/s
Thus, the vertical component of the velocity after the given time is -9.8 m/s while the horizontal component of the velocity is 16 m/s.
Learn more here:brainly.com/question/20349275
Answer:
a North and South Pole :)
Explanation: