Explanation:
(a) For an isothermal process, work done is represented as follows.
W = 
Putting the given values into the above formula as follows.
W = 
=
= 
= 
= 29596.78 J
or, = 29.596 kJ (as 1 kJ = 1000 J)
Therefore, the required work is 29.596 kJ.
(b) For an adiabatic process, work done is as follows.
W = 
=
= 
= 49.41 kJ
Therefore, work required to produce the same compression in an adiabatic process is 49.41 kJ.
(c) We know that for an isothermal process,

or, 
= 
= 11 atm
Hence, the required pressure is 11 atm.
(d) For adiabatic process,

or, 
= 
= 28.7 atm
Therefore, required pressure is 28.7 atm.
Answer:
A)
B)
C)
Explanation:
Given that a pendulum is suspended by a shaft with a very light thin rod.
Followed by the given information: m = 100 g, I = 0.5 m, g = 9.8 m / s²
We can determine the answer to these questions using angular kinematics.
Angular kinematics is just derived from linear kinematics but in different symbols, and expressions.
Here are the formulas for angular kinematics:
- θ = ωt
- ∆w =
- L [Angular momentum] = mvr [mass × velocity × radius]
A) What is the minimum speed required for the pendulum to traverse the complete circle?
We can use the formula v = √gL derived from
B) The same question if the pendulum is suspended with a wire?
C) What is the ratio of the two calculated speeds?
<span>The weightlifter does no work. Although he has exerted force, work is the product of force over distance. Since he has not moved the wall he has done no work.</span>
The main formula to be used here is
Force = (mass) x (acceleration).
We'll get to work in just a second. But first, I must confess to you that I see
two things happening here, and I only know how to handle one of them. So
my answer will be incomplete, but I believe it will be more reliable than the
first answer that was previously offered here.
On the <u>right</u> side ... where the 2 kg and the 3 kg are hanging over the same
pulley, those weights are not balanced, so the 3 kg will pull the 2kg down, with
some acceleration. I don't know what to do with that, because . . .
At the <em>same time</em>, both of those will be pulled <u>up</u> by the 10 kg on the other side
of the upper pulley.
I think I can handle the 10 kg, and work out the acceleration that IT has.
Let's look at only the forces on the 10 kg:
-- The force of gravity is pulling it down, with the whatever the weight of 10 kg is.
-- At the same time, the rope is pulling it UP, with whatever the weight of 5 kg is ...
that's the weight of the two smaller blocks on the other end of the rope.
So, the net force on the 10 kg is the weight of (10 - 5) = 5 kg, downward.
The weight of 5 kg is (mass) x (gravity) = (5 x 9.8) = 49 newtons.
The acceleration of 10 kg, with 49 newtons of force on it, is
Acceleration = (force) / (mass) = 49/10 = <em>4.9 meters per second²</em>
Answer:
Velocity
Explanation:
<u>Velocity</u> is the rate that an object moves in certain direction.