Answer:Um... I think 5000 i am not really sure
Explanation: I Dont Really Know
<u>Answer:</u> The acceleration of the object is 2m/s^2. If net force increases, acceleration will also increase and if mass increases, the acceleration will decrease.
<u>Explanation:</u>
Force is defined as the product of object's mass and acceleration.
Mathematically,
F = ma ......(1)
or,
a = F/m .....(2)
where,
F = Force exerted on an object = 60N
m = mass of an object = 30kg
a = acceleration of the object = ?
Putting values in above equation, we get:
a = 60 kg.m/s^2/30 kg = 2m/s^2
The acceleration of the car is 2m/s^2.
From equation 2, it is visible that acceleration is directly proportional to force. This means that \if force increases, acceleration also increases.
And acceleration is inversely proportional to mass of the object. This means that if mass increases, the acceleration decreases.
Hence, if net force increases, acceleration will also increase and if mass increases, the acceleration will decrease.
Alkenes have single and double bonds. Double bond is more reactive than single bond.
Alkanes have only single bonds, because of it alkanes is less reactive than alkenes.
The initial state of the system is comprised of
(a) A metal sample
m₁ = 43.5 g, mass
T₁ = 100°C, temperature
c₁ (unknown) specific heat, J/(g-C)
(b) Water
m₂ = 39.9 g, mass
T₂ = 25.1°C, temperature
c₂ = 4.184 J/(g-C), specific heat
The final state of the system is
M = m₁ + m₂, total mass
T = 33.5°C, equilibrium temperature
Work in SI units. Note that changes in °C are equal to changes in °K.
Equate change in total thermal energy to zero because the energy is conserved.
m₁c₁(T-T₁) + m₂c₂(T-T₂) = 0
(43.5)*(c₁)(33.5 - 100) + (39.9)*(4.184)*(33.5 - 25.1) = 0
-2892.8c₁ + 1402.3 = 0
c₁ = 1402.3/2892.8
= 0.4848 J/(g-C)
Answer: The specific heat capacity of the metal is 0.485 J/(g-°C)