Answer:
0.5 cents per pound.
4.50/9 = 0.5
Please mark me brainliest! I hope this helps!
Answer:
8y^3+6y^2-29y+15
Step-by-step explanation:
the correct expression is
(4y − 3)(2y^2 + 3y − 5)
Given data
We have the expression
(4y − 3)(2y^2 + 3y − 5)
let us open bracket
8y^3+12y^2-20y-6y^2-9y+15
Collect like terms
8y^3+12y^2-6y^2-20y-9y+15
8y^3+6y^2-29y+15
X+(x+1)=17
So 2x+1=17
Which means 2x=16
Which then means x=8
But you still need the second number, which is x+1, so 8+1=9.
This means that the consecutive numbers are 8 and 9.
Answer:
The solution to this question can be defined as follows:
Step-by-step explanation:
Please find the complete question in the attached file.
![A = \left[\begin{array}{ccc} \frac{3}{4}& \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2}& 0\\ -\frac{1}{4}& -\frac{1}{4} & 0\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B3%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%26%200%5C%5C%20-%5Cfrac%7B1%7D%7B4%7D%26%20-%5Cfrac%7B1%7D%7B4%7D%20%26%200%5Cend%7Barray%7D%5Cright%5D)
now for given values:
![\left[\begin{array}{ccc} \frac{3}{4} - \lambda & \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2} - \lambda & 0\\ -\frac{1}{4}& -\frac{1}{4} & 0 -\lambda \end{array}\right]=0 \\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B3%7D%7B4%7D%20-%20%5Clambda%20%26%20%5Cfrac%7B1%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%20-%20%5Clambda%20%26%200%5C%5C%20-%5Cfrac%7B1%7D%7B4%7D%26%20-%5Cfrac%7B1%7D%7B4%7D%20%26%200%20-%5Clambda%20%5Cend%7Barray%7D%5Cright%5D%3D0%20%5C%5C%5C%5C)
![\to (\frac{3}{4} - \lambda ) [-\lambda (\frac{1}{2} - \lambda ) -0] - 0 - \frac{1}{4}[0- \frac{1}{2} (\frac{1}{2} - \lambda )] =0 \\\\\to (\frac{3}{4} - \lambda ) [(\frac{\lambda}{2} + \lambda^2 )] - \frac{1}{4}[\frac{\lambda}{2} - \frac{1}{4}] =0 \\\\\to (\frac{3}{8}\lambda + \frac{3}{4} \lambda^2 - \frac{\lambda^2}{2} - \lambda^3 - \frac{\lambda}{8} + \frac{1}{16}=0 \\\\\to (\lambda - \frac{1}{2}) (\lambda -\frac{1}{4}) (\lambda - \frac{1}{2}) =0\\\\](https://tex.z-dn.net/?f=%5Cto%20%20%28%5Cfrac%7B3%7D%7B4%7D%20-%20%5Clambda%20%29%20%5B-%5Clambda%20%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Clambda%20%29%20-0%5D%20-%200%20-%20%5Cfrac%7B1%7D%7B4%7D%5B0-%20%5Cfrac%7B1%7D%7B2%7D%20%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Clambda%20%29%5D%20%3D0%20%5C%5C%5C%5C%5Cto%20%20%28%5Cfrac%7B3%7D%7B4%7D%20-%20%5Clambda%20%29%20%5B%28%5Cfrac%7B%5Clambda%7D%7B2%7D%20%2B%20%5Clambda%5E2%20%29%5D%20-%20%5Cfrac%7B1%7D%7B4%7D%5B%5Cfrac%7B%5Clambda%7D%7B2%7D%20-%20%20%5Cfrac%7B1%7D%7B4%7D%5D%20%3D0%20%5C%5C%5C%5C%5Cto%20%20%28%5Cfrac%7B3%7D%7B8%7D%5Clambda%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Clambda%5E2%20-%20%5Cfrac%7B%5Clambda%5E2%7D%7B2%7D%20-%20%5Clambda%5E3%20-%20%5Cfrac%7B%5Clambda%7D%7B8%7D%20%2B%20%5Cfrac%7B1%7D%7B16%7D%3D0%20%5C%5C%5C%5C%5Cto%20%28%5Clambda%20-%20%5Cfrac%7B1%7D%7B2%7D%29%20%28%5Clambda%20-%5Cfrac%7B1%7D%7B4%7D%29%20%28%5Clambda%20-%20%5Cfrac%7B1%7D%7B2%7D%29%20%3D0%5C%5C%5C%5C)


In point b:
Its
spectral radius is less than 1 hence matrix is convergent.
In point c:
![\to c^{(k+1)} = A x^{k}+C \\\\\to x(0) = \left(\begin{array}{c}3&1&2\end{array}\right) , c = \left(\begin{array}{c}2&2&4\end{array}\right)\\\\ \to x^{(k+1)} = \left[\begin{array}{ccc} \frac{3}{4}& \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2}& 0\\ -\frac{1}{4}& -\frac{1}{4} & 0\end{array}\right] x^k + \left[\begin{array}{c}2&2&4\end{array}\right] \\\\](https://tex.z-dn.net/?f=%5Cto%20c%5E%7B%28k%2B1%29%7D%20%3D%20A%20x%5E%7Bk%7D%2BC%20%5C%5C%5C%5C%5Cto%20x%280%29%20%3D%20%20%20%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D3%261%262%5Cend%7Barray%7D%5Cright%29%20%20%2C%20c%20%3D%20%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D2%262%264%5Cend%7Barray%7D%5Cright%29%5C%5C%5C%5C%20%20%5Cto%20x%5E%7B%28k%2B1%29%7D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B3%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%26%200%5C%5C%20-%5Cfrac%7B1%7D%7B4%7D%26%20-%5Cfrac%7B1%7D%7B4%7D%20%26%200%5Cend%7Barray%7D%5Cright%5D%20x%5Ek%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%262%264%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%5C%5C)
after solving the value the answer is
:
![\lim_{k \to \infty} x^k=o = \left[\begin{array}{c}0&0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Clim_%7Bk%20%5Cto%20%5Cinfty%7D%20x%5Ek%3Do%20%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%260%260%5Cend%7Barray%7D%5Cright%5D)