Answer: Gravity slows the ball down as it goes up and eventually stops it from going up and starts to pull it back down to earth.
Explanation:
Answer:
The distance between the places where the intensity is zero due to the double slit effect is 15 mm.
Explanation:
Given that,
Distance between the slits = 0.04 mm
Width = 0.01 mm
Distance between the slits and screen = 1 m
Wavelength = 600 nm
We need to calculate the distance between the places where the intensity is zero due to the double slit effect
For constructive fringe
First minima from center

Second minima from center

The distance between the places where the intensity is zero due to the double slit effect



Put the value into the formula



Hence, The distance between the places where the intensity is zero due to the double slit effect is 15 mm.
Answer:
The height will be 4 times.
Explanation:
Given that,
The speed at the bottom of the hill doubled.
We need to calculate the height
Using conservation of energy




Therefore,

Here, m and g are constant
Hence, The height will be 4 times.
Answer:
it's all around you and it can't be destroyed
Answer:
5 hours
Explanation:
Let the required time be x hours. The time will be the same for both cars.
The cars will cover different distances because they are travelling at different speeds.
<em>D=S×T
</em>
The distance travelled by the slower car = 50×x miles.
The distance travelled by the faster car = 58×x miles.
The two distances differ by 40 miles.
58x−50x=40
8x=40
x=5 hours
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A second method:
The difference in the distances is 40 miles
The difference in the speeds is #8mph.
The time to make up the 40 miles=
=5 hours