Answer:
A positive and negative ion.
Explanation:
Ionic bond:
It is the bond which is formed by the transfer of electron from one atom to the atom of another element.
Both bonded atoms have very large electronegativity difference.
The atom with large electronegativity value accept the electron from other with smaller value of electronegativity.
For example:
Sodium chloride is ionic compound. The electronegativity of chlorine is 3.16 and for sodium is 0.93. There is large difference is present. That's why electron from sodium is transfer to the chlorine. Sodium becomes positive and chlorine becomes negative ion. Sodium have one valance electron while chlorine have 7 valance electrons. In order to complete the octet chlorine require one electron while sodium need to lose its one electrons. That's why when both atom combine sodium lose its electron and becomes positive ion i.e cation while chlorine accept its electron and becomes negative ion called anion and bond between them is ionic bond.
Answer:
0.3192 M
Explanation:
From the question given above, the following data were obtained:
Volume of stock solution (V1) = 5.32 mL Molarity of stock solution (M1) = 6 M
Volume of diluted solution (V2) = 100 mL
Molarity of diluted solution (M2) =?
We can obtain the molarity of the diluted solution by using the dilution formula as shown follow:
M1V1 = M2V2
6 × 5.32 = M2 ×100
31.92 = M2 × 100
Divide both side by 100
M2 = 31.92 / 100
M2 = 0.3192 M
Therefore, the molarity of the diluted solution is 0.3192 M.
It is a heterogeneous mixture <span>
</span>
Though the ratio of any two atom's masses was the same on either scale, it was horribly confusing, so in 1961, a compromise was reached. Instead of using either Hydrogen, or Oxygen as the standard, the isotope of Carbon<span> with 6 </span>protons<span> and 6 neutrons in its nucleus (</span>Carbon-12<span>) was given a mass of exactly 12.</span>
Answer:
2.94 x
Explanation:
First we need to find out how many moles of ammonia there are, using the formula: Mass = mr x moles.
We know the mass is 83.1g, now we need to find the mR of ammonia - NH3.
N = 14, H = 1, so 14 + (3x1) = an mr of 17.
Moles = mass/ mr = 83.1/17 = 4.8882
Now we can multiply the moles by avogadro's constant to find the number of molecules:
4.8882 x (6.02 x
) = 2.94 x
molecules of ammonia