-11-8=-19
-17-10=-27
slope=19/27
<u>Given</u><u> </u><u>info:</u><u>-</u>If the radius of a right circular cylinder is doubled and height becomes 1/4 of the original height.
Find the ratio of the Curved Surface Areas of the new cylinder to that of the original cylinder ?
<u>Explanation</u><u>:</u><u>-</u>
Let the radius of the right circular cylinder be r units
Let the radius of the right circular cylinder be h units
Curved Surface Area of the original right circular cylinder = 2πrh sq.units ----(i)
If the radius of the right circular cylinder is doubled then the radius of the new cylinder = 2r units
The height of the new right circular cylinder
= (1/4)×h units
⇛ h/4 units
Curved Surface Area of the new cylinder
= 2π(2r)(h/4) sq.units
⇛ 4πrh/4 sq.units
⇛ πrh sq.units --------(ii)
The ratio of the Curved Surface Areas of the new cylinder to that of the original cylinder
⇛ πrh : 2πrh
⇛ πrh / 2πrh
⇛ 1/2
⇛ 1:2
Therefore the ratio = 1:2
The ratio of the Curved Surface Areas of the new cylinder to that of the original cylinder is 1:2
If it’s blank and just a negative sign the answer should be -1
Answer:
see below
Step-by-step explanation:
point A(x,y) becomes A'(-x,-y).
So point E (-3,-5) becomes E'( 3,5)
F (-1,-1) becomes F'(1,1)
and G (0,-5) becomes G'( 0,5)
The area of the square would be 4/25 here is the work:
Area of an 2d shape: length * width
For a square it is 2/5 * 2/5
You multiply the two numbers and you should get 4/25.
If helped mark me the brainiest!!