The equation of state for a hypothetical ideal gas is known as the ideal gas law, sometimes known as the general gas equation. i.e. PV = nRT or P1V1 = P2V2.
- According to the ideal gas law, the sum of the absolute temperature of the gas and the universal gas constant is equal to the product of the pressure and volume of one gram of an ideal gas.
- Robert Boyle, Gay-Lussac, and Amedeo Avogadro's observational work served as the basis for the ideal gas law. The Ideal gas equation, which simultaneously describes every relationship, is obtained by combining all of their observations into a single statement.
- When applying the gas constant R = 0.082 L.atm/K.mol, pressure, volume, and temperature should all be expressed in units of atmospheres (atm), litres (L), and kelvin (K).
- At high pressure and low temperature, the ideal gas law basically fails because molecule size and intermolecular forces are no longer negligible but rather become significant considerations.
Learn more about ideal gas law here:
brainly.com/question/26040104
#SPJ9
It’s atomic mass is what the number means.
Mass C₆H₈O₇ : 0.531484 g
<h3>Further explanation</h3>
Reaction
3NaHCO₃ (aq) + C₆H₈O₇ (aq) → 3 CO₂ (g) + 3 H₂O (l) + Na₃C₆H₅O₇ (aq)
MW NaHCO₃ : 84 g/mol
mass NaHCO₃ : 7.10² mg=0.7 g
mol NaHCO₃ :

mol C₆H₈O₇ :

MW C₆H₈O₇ : 192 g/mol
mass C₆H₈O₇ :

When an organism is buried quickly there is less decay and better the chance for it to be persevere. The hard parts of the organism such as bones, shells, and teeth have a better chance of becoming fossils that softer parts of the organism. HARD BONES.