Answer:
f(x + 1) = 3x² + 5x + 7
Step-by-step explanation:
To find f(x + 1), substitute x = x + 1 into f(x), that is
f(x + 1) = 3(x + 1)² - (x + 1) + 5 ← expand (x + 1)² using FOIL
= 3(x² + 2x + 1) - x - 1 + 5 ← distribute parenthesis by 3
= 3x² + 6x + 3 - x - 1 + 5 ← collect like terms
= 3x² + 5x + 7
Answer:
Step-by-step explanation:
A 2nd order polynomial such as this one will have 2 roots; a 3rd order polynomial 3 roots, and so on.
The quadratic formula is one of the faster ways (in this situation, at least) in which to find the roots. From 2x^2 + 4x + 7 we get a = 2, b = 4 and c = 7.
Then the discriminant is b^2 - 4ac, or, here, 4^2 - 4(2)(7), or -40. Because the discriminant is negative, we know that the roots will be complex and unequal.
Using the quadratic formula:
-4 ±√[-40] -4 ± 2i√10
x = ------------------ = ------------------
4 4
-2 ± i√10
Thus, the roots are x = ------------------
2
Rewriting the formula in standard form would be x^2-8x+14=0
Answer:
-12
Step-by-step explanation:
(-2)(-3)^2-2(2-5). Original
-2(9)-2(2-5) Distribute Exponents
-18-4+10 Distribute Parentheses
-22+10 Do subtraction
-12 Do Addition
Answer:
-15
Step-by-step explanation: