Answer:
The emission spectrum is formed when the electrons of a particular atom absorb energy and are excited (in this case by heating), reaching higher energy levels.
You can see it for example with an experiment where we light alcohol mixed with banana chips (it has potassium). The burning alcohol emits heat that makes potassium atoms excite and these in turn emit something red, orange light. If we add for example boric acid you see a green light.
Explanation:
Answer:
Answers are in the explanation.
Explanation:
- The half‑life of A increases as the initial concentration of A decreases. order: <em>2. </em>In the half-life of second-order reactions, the half-life is inversely proportional to initial concentration.
- A three‑fold increase in the initial concentration of A leads to a nine‑fold increase in the initial rate. order: <em>2. </em>The rate law of second-order is: rate = k[A]²
- A three‑fold increase in the initial concentration of A leads to a 1.73‑fold increase in the initial rate. order: <em>1/2. </em>The rate law for this reaction is: rate = k √[A]
- The time required for [A] to decrease from [A]₀ to [A]₀/2 is equal to the time required for [A] to decrease from [A]₀/2 to [A]₀/4. order: <em>1. </em>The concentration-time equation for first-order reaction is: ln[A] = ln[A]₀ - kt. That means the [A] decreasing logarithmically.
- The rate of decrease of [A] is a constant. order: <em>0. </em>The rate law is: rate = k -<em>where k is a constant-</em>
9.c
10.c
11.a
12.d. hopes this help u
Answer:
electron configuration for boron is 1s22s22p1
hope this helps :)
Explanation: