Using the dot product:
For any vector x, we have
||x|| = √(x • x)
This means that
||w|| = √(w • w)
… = √((u + z) • (u + z))
… = √((u • u) + (u • z) + (z • u) + (z • z))
… = √(||u||² + 2 (u • z) + ||z||²)
We have
u = ⟨2, 12⟩ ⇒ ||u|| = √(2² + 12²) = 2√37
z = ⟨-7, 5⟩ ⇒ ||z|| = √((-7)² + 5²) = √74
u • z = ⟨2, 12⟩ • ⟨-7, 5⟩ = -14 + 60 = 46
and so
||w|| = √((2√37)² + 2•46 + (√74)²)
… = √(4•37 + 2•46 + 74)
… = √314 ≈ 17.720
Alternatively, without mentioning the dot product,
w = u + z = ⟨2, 12⟩ + ⟨-7, 5⟩ = ⟨-5, 17⟩
and so
||w|| = √((-5)² + 17²) = √314 ≈ 17.720
Answer:
2496in3
Step-by-step explanation:
12x16x13=2496in3
amistre64 Medals 0
e = k.m
360 = k.60
k = 360/60 = 36/6 = 6
108 = 6.m
108/6 = m = 18
Answer:

Step-by-step explanation:
f(x)= - 3x
g(x) = x+2
(f•g)(x)
f(x) • g(x)
plug in
-3x • x+2
-3x(x+2)
distribute the -3x

hope this helps!
Answer:
Looks good to me
Step-by-step explanation:
I checked for an incorrect answer and it seems like you got everything right :)