Answer:
Both balls will hit the ground at the same time
Explanation:
The factor which leads to ball falling is the gravity acting on the ball;
The motions along the path of both balls are independent and both balls will obey the following illustration
Using the third equation of motion
s = ut + ½at²
Where s = distance covered by both balls.
u = initial velocity of both balls. Since both balls start from rest, u = 0m/s
a = acceleration; and it's equal to acceleration due to gravity.
a = g
By substituton
s = 0 * t + ½gt²
s = 0 + ½gt²
s = ½gt²
Make t the subject of formula
gt² = 2s
t² = 2s/g
t = ±√(2s/g)
But time can't be less than 0 (in other words, negative)
So,
t = √(2s/g)
It'll take both balls √(2s/g) time to hit the floor
The frictional torque exerted on the platform by the axle as the platform rotates will be;
![\rm T_f \theta =\frac{1}{2} I [\omega^2-\omega_0^2]](https://tex.z-dn.net/?f=%5Crm%20T_f%20%5Ctheta%20%3D%5Cfrac%7B1%7D%7B2%7D%20I%20%5B%5Comega%5E2-%5Comega_0%5E2%5D)
<h3>What is torque?</h3>
Torque is the force's twisting action about the axis of rotation. Torque is the term used to describe the instant of force. It is the rotational equivalent of force. Torque is a force that acts in a turn or twist.
The amount of torque is equal to force multiplied by the perpendicular distance between the point of application of force and the axis of rotation.
Work done by the frictional torque = Change in the rotational kinetic energy of the wheel
![\rm T_f \theta =\frac{1}{2} I [\omega^2-\omega_0^2]](https://tex.z-dn.net/?f=%5Crm%20T_f%20%5Ctheta%20%3D%5Cfrac%7B1%7D%7B2%7D%20I%20%5B%5Comega%5E2-%5Comega_0%5E2%5D)
Where,
is the frictional torque
is the final angular velocity
is the initial angular velocity
is the angular displacement
Hence, the frictional torque exerted on the platform by the axle as the platform rotates will be;
![\rm T_f \theta =\frac{1}{2} I [\omega^2-\omega_0^2]](https://tex.z-dn.net/?f=%5Crm%20T_f%20%5Ctheta%20%3D%5Cfrac%7B1%7D%7B2%7D%20I%20%5B%5Comega%5E2-%5Comega_0%5E2%5D)
To learn more about the torque, refer to the link;
brainly.com/question/6855614
#SPJ1
<u>Answer</u>:
(B) A pot being heated by an electric burner
(D) A radiator that emits warm air and draws in cool air
(E) A hot air balloon rising and falling in the atmosphere
These are some of the examples of the convection currents.
<u>Explanation</u>:
Earlier, electrons were believed to have positive charges and then electric current were discovered. But later after the invention of electric current and current which is termed to be the flow of electrons and is usually flows from negative to positive terminal. But its convention is not discarded in which current moves from positive terminal to negative and it is called convention current. The direction of current shown in the circuit is said to be the convention current.
Hence, the following are the examples of convention current.
1. Boiling water - The energy travels into the pot from the burner, boiling down the water. Then this warm water is accumulating on the top and colder one is heading down to absorb it, triggering a circular motion.
2. Radiator - Place hot air at the peak and pull cool air at the bottom.
3. Hot air balloon - The air is warmed up by a heating element within the balloon, so the air jumps upwards. This induces the balloon to increase in size due to the inside trapping of the warm air. He removes a few of the warm air when the pilot commences to dive, and cold air takes place, enabling the parachute to drop.
refraction is the right answer
Answer:
Speed, 
Explanation:
It is given that,
A light wave is described by the following function as :
.....(1)
The general equation of wave is given by :
........(2)
On comparing equation (1) and (2)



Wavelength, 



Frequency, 
Let v is the speed of the light wave. It is given by :



So, the speed of the light wave is
. Hence, this is the required solution.