The object is at rest is the answer.
We know the formulas for momentum and energy. But they both involve the mass of
the object, and we don't know the mass of the baseball. What can we do ?
It's not a catastrophe. The question only asks which one is bigger. If we're clever,
we can answer that without ever knowing how much the momentum or the energy
actually is. We know that both baseballs have the same mass, so let's just call it
' M ' and not worry about what it really is.
<u>Momentum of anything = (mass) x (speed)</u>
Momentum of the first baseball = (M) x (4 m/s) = 4M
Momentum of the second one = (M) x (16 m/s) = 16M
The second baseball has 4 times as much momentum as the first one has.
<u>Kinetic energy of anything = 1/2 (mass) x (speed squared)</u>
KE of the first baseball = 1/2 (M) x (4 squared) = 8M
KE of the second one = 1/2 (M) x (16 squared) = 128M
The second baseball has 16 times as much kinetic energy as the first one has.
Answer:
In biological taxonomy, a domain (also superregnum, superkingdom, or empire) is a taxon in the highest rank of organisms, higher than a kingdom. ... The three-domain system of Carl Woese, introduced in 1990, with top-level groupings of Archaea, Bacteria, and Eukaryota domains.
Answer:
Explanation:
If friction is neglected, the wheel cannot roll and can only slide frictionlessly and will have the same velocity at the bottom of the ramp as if it had been in free fall as it has converted the same amount of potential energy.
mgh = ½mv²
v = √(2gh) = √(2(9.81)(2.00)) = 6.26418... = 6.26 m/s
However if we do not ignore all friction and the wheel rolls without slipping down the slope, the potential energy becomes linear and rotational kinetic energy
mgh = ½mv² + ½Iω²
mgh = ½mv² + ½(½mR²)(v/R)²
2gh = v² + ½v²
2gh = 3v²/2
v = √(4gh/3) =√(4(9.81)(2.00)/3) = 5.11468... = 5.11 m/s
Answer:
Capacitor
Explanation:
Capacitor ; A capacitor is a passive two-terminal electrical component that can store energy in an electric field electrostatically. It works as a small rechargeable battery that stores electricity. However, unlike a battery, it can charge and discharge in the split of a second. Capacitors are widely used to build different types of electronic circuits.