Answer:
Check the first and the third choices:
<u><em /></u>
- <u><em>a. The temperature of a gas is directly proportional to its volume</em></u>
- <u><em>b. The temperature-to-volume ratio of a gas is constant.</em></u>
Explanation:
Rewrite the table for better understanding:
Temperature of gas (K) Volume of gas (L)
298 4.55
315 4.81
325 4.96
335 ?
Calculate the ratios temperature to volume with 3 significant figures:
Then, those numbers show a <u><em>constant temperature-to-volume ratio</em></u>, which may be expressed in a formula as:
- Temperature / Volume = constant, which is a directly proportional variation (the volume increases in a constant proportion to the increase of the temperature).
Hence, the correct choices are:
- The temperature of a gas is directly proportional to its volume (first statement), and
- The emperature-to-volume ratio of a gas is constant (third statement).
Answer:
Balanced forces are responsible for unchanging motion. Balanced forces are forces where the effect of one force is cancelled out by another. A tug of war, where each team is pulling equally on the rope, is an example of balanced forces. The forces exerted on the rope are equal in size and opposite in direction.
Explanation:
Kinetic energy = (1/2) (mass) (speed)²
= (1/2) (1.4 kg) (22.5 m/s)²
= (0.7 kg) (506.25 m²/s² )
= 354.375 kg-m²/s² = 354.375 joules .
This is just the kinetic energy associated with a 1.4-kg glob of
mass sailing through space at 22.5 m/s. In the case of a frisbee,
it's also spinning, and there's some additional kinetic energy stored
in the spin.
Answer:
The mass number 204 – 82 protons = 122 neutrons
Explanation:
Hope this helps!