<h2><u>Circle Equations</u></h2>
<h3>Write the standard form of the equation of the circle with the given characteristics.</h3><h3>Center: (0, 0); Radius: 2</h3>
To determine the equation of a circle, use the standard form of a circle (x - h)² + (y - k)² = r² where,
- <u>(h, k)</u> is the center; and
- <u>r</u> is the radius
Substitute the values of the center and radius to the standard form.
<u>Given:</u>
<u>(0, 0)</u> - <u>center</u>
<u>2</u> - <u>radius</u>
- (x - h)² + (y - k)² = 2²
- (x - 0)² + (y - 0)² = 4
- x² + y² = 4
<u>Answer:</u>
- The equation of the circle is <u>x² + y² = 4</u>.
Wxndy~~
Answer:
true
Step-by-step explanation:
i hope that helped you
Answer:
Picture
Step-by-step explanation:
I am not sure if this is what you want
Answer:
(-7,4)
Step-by-step explanation:
goal: (y-k)^2=4p(x-h)
y^2-8y=4x+12 Rearranged and added 4x and 12 on both sides
y^2-8y+(-8/2)^2=4x+12+(-8/2)^2 complete square time (add same thing on both sides)
y^2-8y+(-4)^2=4x+12+(-4)^2 (simplify inside the squares)
(y-4)^2=4x+12+16 (now write the left hand side as a square)
(y-4)^2=4x+28
(y-4)^2=4(x+7) factored...
vertex is (-7,4)