Answer:
-<u>T</u><u>h</u><u>e</u><u> </u><u>g</u><u>r</u><u>a</u><u>p</u><u>h</u><u> </u>crosses <u>t</u><u>h</u><u>e</u><u> </u>y-axis <u>a</u><u>t</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>p</u><u>o</u><u>i</u><u>n</u><u>t</u><u> </u><u>(</u>0,0)
<u>N</u><u>o</u><u>n</u><u>e</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>g</u><u>i</u><u>v</u><u>e</u><u>n</u><u> </u><u>o</u><u>p</u><u>t</u><u>i</u><u>o</u><u>n</u><u>s</u><u> </u><u>i</u><u>s</u><u> </u><u>c</u><u>o</u><u>r</u><u>r</u><u>e</u><u>c</u><u>t</u><u> </u>
<u>A</u><u> </u><u>g</u><u>r</u><u>a</u><u>p</u><u>h</u><u> </u><u>c</u><u>r</u><u>o</u><u>s</u><u>s</u><u>e</u><u>s</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u>y-axis <u>a</u><u>t</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>p</u><u>o</u><u>i</u><u>n</u><u>t</u><u> </u><u>(</u>0,y).<u>T</u><u>h</u><u>i</u><u>s</u><u> </u><u>m</u><u>e</u><u>a</u><u>n</u><u>s</u><u> </u><u>t</u><u>h</u><u>a</u><u>t</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>g</u><u>r</u><u>a</u><u>p</u><u>h</u><u> </u><u>w</u><u>i</u><u>l</u><u>l</u><u> </u><u>c</u><u>r</u><u>o</u><u>s</u><u>s</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u>y-axis <u>w</u><u>h</u><u>e</u><u>n</u><u> </u>x-=0
To find the point where the graph crosses the y-axis,substitute x=0 into the given equation y-9x
substitute x=0 into the equation y-9x to find the corresponding value of y
That is,
y=9(0)
y=0
therefore the graph crosses the y-axis at the point (0,0)
Step-by-step explanation:
hope it hlps
Answer:
independent is Y
Dependent is X
Step-by-step explanation:
I think It’s false because not everyone has a hard time to eliminate debts
Suppose

is the number of possible combinations for a suitcase with a lock consisting of

wheels. If you added one more wheel onto the lock, there would only be 9 allowed possible digits you can use for the new wheel. This means the number of possible combinations for

wheels, or

is given recursively by the formula

starting with

(because you can start the combination with any one of the ten available digits 0 through 9).
For example, if the combination for a 3-wheel lock is 282, then a 4-wheel lock can be any one of 2820, 2821, 2823, ..., 2829 (nine possibilities depending on the second-to-last digit).
By substitution, you have

This means a lock with 55 wheels will have

possible combinations (a number with 53 digits).
Answer:
33 there you go
Step-by-step explanation: