Answer:
v = 8.8 m /s
Explanation:
For listener and source going away from each other the formula of Doppler effect is as follows

V is velocity of sound , v is velocity of listner and source of sound
f₀ is apparent frequency and f is real frequency
V = 343 , v = ? ,f = 210 , f₀ = 221
Put these value in the relation above
[/tex]
v = 8.8 m /s
Answer:
Explanation:
The Carnot cycle is a special case of a thermodynamic cycle that produces an ideal gas and consists of two isothermal processes and two adiabatic processes. This cycle is a theoretical solution given by Sadi Karnot to refine heat engines for their efficient use.
The formula for the coefficient of efficiency is:
η = (Q₁ - Q₂) / Q₁ = (T₁ - T₂) / T₁
Where Q₁ is is the amount of heat of the heater supplied to the working body and Q₂ is the amount of heat that the working body transfers to the refrigerator according to this T₁ is the temperature of the heater T₂ is the temperature of the refrigerator.
This formula provides a theoretical limit for the maximum value of the coefficient of efficiency of heat engines.
God is with you!!!
Answer:
Explanation:
There are 3 main forces at work here, gravity, normal and friction. The gravity pulls the car straight down and is what keeps the car on the ground. Normal force is straight up from the points where the car is touching, so since the wheels are the only parts of the car touching the street, this is where all the normal force is. Friction force opposes any and all motion, the car wants to slide down the hill and would slide down the hill if there was no friction, so the friction force is in the opposite direction of the cars intended motion.
The acceleration due to gravity is given as:
g = GM/r²
<h3>
Derivation of gravitational acceleration:</h3>
According to Newton's second law of motion,
F = ma
where,
F = force
m = mass
a = acceleration
According to Newton's law of gravity,
F<em>g </em>= GMm/(r + h)²
F<em>g = </em>gravitational force
From Newton's second law of motion,
F<em>g </em>= ma
a = F<em>g</em>/m
We can refer to "a" as "g"
a = g = GMm/(m)(r + h)²
g = GM/(r + h)²
When the object is on or close to the surface, the value of g is constant and height has no considerable impact. Hence, it can be written as,
g = GM/r²
Learn more about gravitational acceleration here:
brainly.com/question/2142879
#SPJ4