Explanation:
Below is an attachment containing the solution.
The velocity of shortening refers to the speed of the contraction from
the muscle shortening while lifting a load. The relationship between the
resistance and velocity of shortening is inverse. The greater the
resistance, the shorter the velocity of shortening and the smaller the
resistance, the larger the velocity of shortening.
Hopefully this help :)
Here, we know, according to 3rd Equation of Kinematics,
v² - u² = 2as
Here, u = 0 [ Free fall ]
a = 9.8 m/s² [ constant value for the Earth system ]
s = 15 m
Substitute their values,
v² - 0² = 2 * 9.8 * 15
v² = 294
v = √294
v = 17.15 m/s
In short, Your Answer would be Option D
Hope this helps!
Answer:
Explanation:
Given
initially mass is stretched to 
Let k be the spring Constant of spring
Therefore Total Mechanical Energy is 
Position at which kinetic Energy is equal to Elastic Potential Energy


it is given

thus 


