Answer:
can only be determined experimentally.
Explanation:
In the early days of inorganic chemistry, the structure of complex ions remained a mystery hence the name ''complex''.
These ions appear to have structures that defied accurate elucidation. However, by diligent laboratory investigation, Alfred Werner was able to accurately determine the structure of cobalt complexes. As a result of this, he is regarded as a pathfinder in coordination chemistry.
Hence, the structure of complex ions can only be determined experimentally.
Answer:
Since KOH is a strong base, the solution completely ionizes into K+ and OH- when in water. The reaction KOH --> K+ + OH- takes place. The concentration of [ OH- ] can then be used to calculate the pOH of the solution. pH = 14 - pOH = 14 - 1.48 = 12.52
Explanation:
Answer:
- Compress
- Fixed
- Melts
- Melting Point
- Freezing Point
- High
- Crystalline
- Lattice
- Unit cell
- Amorphous solids
Explanation:
Solids tend to be dense and difficult to <u>compress.</u>
They do not flow or take the shape of their containers, like liquids do, because the particles in solids vibrate around <u>fixed</u> points.
When a solid is heated until its particles vibrate so rapidly that they are no longer held in fixed positions, the solid <u>melts</u>.
<u>Melting point</u> is the temperature at which a solid changes to a liquid. The melting and <u>freezing point</u> of a substance are at the same temperature.
In general, ionic solids tend to have relatively <u>high</u> melting points, while molecular solids tend to have relatively low melting points.
Most solids are <u>crystalline</u>
The particles are arranged in a pattern known as a crystal <u>lattice</u>
The smallest subunit of a crystal lattice is the <u>unit cell</u>
Some solids lack an ordered internal structure and are called <u>amorphous solids.</u>
The rounded shape of the bullet because as it goes through the glass it stops spinning and this make the hole wider