Answer:
Your answer choices are correct
Step-by-step explanation:
Mark me brainliest pls
1) given function
y = - 2 ^ ( -x + 2) + 1
2) domain: domain is the set of the x-values for which the function is defined.
The exponential function is defined for all the real numbers, so the domain of the given function is all the real numbers.
3) x-intercept => y = 0
=> y = - 2 ^ ( -x + 2) + 1 = 0 => 2^ ( -x + 2) = 1
=> - x + 2 = 0 => x = 2
The x-intercept is x = 0
4) y-intercept => x = 0
=> y = - 2 ^ ( -x + 2) + 1= - 2 ^ ( 0 + 2) 1 = - (2)^(2) + 1 =- 4 + 1 = - 3
=> The y-intercept is - 3
5) limit when x -> negative infinite
Lim f(x) when x -> ∞ = - ∞
6) limit when x -> infinite
Lim f(x) when x - > infinite = 1
=> asymptote = y = 1
7) range is the set of values of the fucntion: y
Given that the function is strictly decreasing from -∞ to ∞, the range is from - ∞ to less than 1
Range (-∞,1)
- The slope of the graph of the function is equal to 0 for x between x = -3 and x = -2.
- The slope of the graph of the function is equal to 0 for x between x = 3 and x = 4.
- The greatest value of y is y = 4.
- The smallest value of y is y = -3.
<h3>How to complete the sentences?</h3>
By critically observing the graph shown in the image attached below, we can logically deduce that the slope of the graph of this function is equal to 0 for x, between x = -3 and x = -2.
Similarly, the slope of the graph of this function is also equal to 0 for x, between x = 3 and x = 4.
Based on the graph (see attachment), the greatest value of y is 4 while the smallest value of y is -3.
Read more on slope here: brainly.com/question/3493733
#SPJ1
A and C are the correct answers.
(<u>−1</u>
2 )(n^3)+
<u>1</u>
2 n^2+4.6n+(−
<u>1</u>
2)(n^3)+
<u>1</u>
2 n^2+4.5n
=
<u>−1</u>
2 n^3+
1
2 n^2+4.6n+
−1
2 n^3+
1
2 n^2+4.5n
Combine Like Terms:
=
<u>−1</u>
2 n^3+
<u>1</u>
2 n^2+4.6n+
<u>−1</u>
2 n^3+
<u>1</u>
2 n^2+4.5n
=(<u>−1</u>
2 n^3+
<u>−1</u>
2 n^3)+(
<u>1</u>
2 n^2+
<u>1</u>
2 n^2)+(4.6n+4.5n)
=−n^3+n^2+9.1n
Answer:
=−n^3+n^2+9.1n
Everything underlined means its a fraction/divided hope this helps <em>:D</em>