The answer to your question would be $18
Work the information to set inequalities that represent each condition or restriction.
2) Name the
variables.
c: number of color copies
b: number of black-and-white copies
3)
Model each restriction:
i) <span>It
takes 3 minutes to print a color copy and 1 minute to print a
black-and-white copy.
</span><span>
</span><span>
3c + b</span><span>
</span><span>
</span><span>ii) He needs to print
at least 6 copies ⇒
c + b ≥ 6</span><span>
</span><span>
</span><span>iv) And must have
the copies completed in
no more than 12 minutes ⇒</span>
3c + b ≤ 12<span />
4) Additional restrictions are
c ≥ 0, and
b ≥ 0 (i.e.
only positive values for the number of each kind of copies are acceptable)
5) This is how you
graph that:
i) 3c + b ≤ 12: draw the line 3c + b = 12 and shade the region up and to the right of the line.
ii) c + b ≥ 6: draw the line c + b = 6 and shade the region down and to the left of the line.
iii) since c ≥ 0 and b ≥ 0, the region is in the
first quadrant.
iv) The final region is the
intersection of the above mentioned shaded regions.v) You can see such graph in the attached figure.
Relationship 2 is a function because x isn’t being repeated.
The complete question in the attached figure
we know that
The Exterior Angle Theorem establishes that t<span>he measure of an exterior angle of a triangle equals to the sum of the measures of the two remote interior angles of the triangle.
so
the answer is the option</span><span>
A. the remote interior angles</span>