Explanation:
(a) Hooke's law:
F = kx
7.50 N = k (0.0300 m)
k = 250 N/m
(b) Angular frequency:
ω = √(k/m)
ω = √((250 N/m) / (0.500 kg))
ω = 22.4 rad/s
Frequency:
f = ω / (2π)
f = 3.56 cycles/s
Period:
T = 1/f
T = 0.281 s
(c) EE = ½ kx²
EE = ½ (250 N/m) (0.0500 m)²
EE = 0.313 J
(d) A = 0.0500 m
(e) vmax = Aω
vmax = (0.0500 m) (22.4 rad/s)
vmax = 1.12 m/s
amax = Aω²
amax = (0.0500 m) (22.4 rad/s)²
amax = 25.0 m/s²
(f) x = A cos(ωt)
x = (0.0500 m) cos(22.4 rad/s × 0.500 s)
x = 0.00919 m
(g) v = dx/dt = -Aω sin(ωt)
v = -(0.0500 m) (22.4 rad/s) sin(22.4 rad/s × 0.500 s)
v = -1.10 m/s
a = dv/dt = -Aω² cos(ωt)
a = -(0.0500 m) (22.4 rad/s)² cos(22.4 rad/s × 0.500 s)
a = -4.59 m/s²
Answer:
The density of the block is 7.4g/ml.
Explanation:
We can determine the volume of the metal block by taking the difference between the volumes measured in the graduated cylinder:

Now, as we know that the average density of an object is calculated dividing its mass by its volume, we can calculate the density ρ of the metal block using the expression:

Finally, it means that the density of the metal block is 7.4g/ml.
Solids have the highest density. Then comes liquid and the less dense one is gas.
Answer:

Explanation:
From the question we are told that:
Mass of astronaut 
Mass of tool 
Distance 
Velocity of separation 
Velocity of tool bag
Generally the equation for momentum is mathematically given by

Therefore
Initial Momentum before drop


Initial Momentum after drop

Therefore
Since 

Generally the equation for Time T is mathematically given by


