Since there is no weight, I would assume that this is a 100g of pure compound.
Okay so I would be changing the percentage to gram to solve for the mole.
So
40.0g C (1 mol C/12.01 g C) = 3.33 mol C
6.73g H (1 mol H/1.01 g H ) = 6.66 mol H
53.3g O (1 mol O/16.00 g O) = 3.33 mol O
With that, two of our moles is 3.33, so we consider that are our 1, as it is also the lowest. Therefore the empirical formula is CH2O
A coefficient is a whole number that appears before the formula in an equation.
Answer:
Freezing and Melting (Fusion)
Explanation:
Answer:
8.08 × 10⁻⁴
Explanation:
Let's consider the following reaction.
COCl₂(g) ⇄ CO (g) + Cl₂(g)
The initial concentration of phosgene is:
M = 2.00 mol / 1.00 L = 2.00 M
We can find the final concentrations using an ICE chart.
COCl₂(g) ⇄ CO (g) + Cl₂(g)
I 2.00 0 0
C -x +x +x
E 2.00 -x x x
The equilibrium concentration of Cl₂, x, is 0.0398 mol / 1.00 L = 0.0398 M.
The concentrations at equilibrium are:
[COCl₂] = 2.00 -x = 1.96 M
[CO] = [Cl₂] = 0.0398 M
The equilibrium constant (Keq) is:
Keq = [CO].[Cl₂]/[COCl₂]
Keq = (0.0398)²/1.96
Keq = 8.08 × 10⁻⁴