Answer:
Balancing Strategies: To balance this reaction it is best to get the Oxygen atoms on the reactant side of the equation to an even number. Once this is done everything else falls into place. Put a "2" in front of the NaClO3. Change the coefficient in front of the O2.
The balanced chemical reaction is:
N2 + 3H2 = 2NH3
We are given the amount of hydrogen gas to be used in the reaction. This will be the starting point of the calculations.
24.0 mol H2 (2 mol NH3 / 3 mol H2 ) = 16 mol NH3
Therefore, ammonia produced from the reaction given is 16 moles.
Answer:

Explanation:
First, we need to find the molecular mass of water (H₂O).
H₂O has:
- 2 Hydrogen atoms (subscript of 2)
- 1 Oxygen atom (implied subscript of 1)
Use the Periodic Table to find the mass of hydrogen and oxygen. Then, multiply by the number of atoms of the element.
- Hydrogen: 1.0079 g/mol
- Oxygen: 15.9994 g/mol
There are 2 hydrogen atoms, so multiply the mass by 2.
- 2 Hydrogen: (1.0079 g/mol)(2)= 2.0158 g/mol
Now, find the mass of H₂O. Add the mass of 2 hydrogen atoms and 1 oxygen atom.
- 2.0158 g/mol + 15.9994 g/mol = 18.0152 g/mol
Next, find the amount of moles using the molecular mass we just calculated. Set up a ratio.

Multiply. The grams of H₂O will cancel out.



The original measurement given had two significant figures (3,2). We must round to have 2 significant figures. All the zeroes before the 1 are not significant. So, round to the ten thousandth.
The 7 in the hundred thousandth place tells us to round up.

There are about <u>0.0018 moles in 0.032 grams.</u>