Answer:
The statement that best describes the trend in first ionization enery of elements on the periodic table is:
It generally decreases down a group because valence electrons are farther from the nucleus.
The first ionization energy measures how difficult is to release an electron from the outermost shell. The higher the ionization energy the more difficult it is to release an electron, the lower the ionication energy the easier to release an electron.
As the atomic number of the atom increases (which is what happens when you go down a group) the furthest the outermost shell of electrons will be (the size of the atoms increases) and so those electrons require less energy to be released, which means that the ionization energy decreases.
Hope it helps!
You want to divide by avagadros number (6.22 x 10^23). This will cancel the atoms unit and give moles, moles of Iridium. Now you want to calculate the atomic mass of Iridium which is in units of grams per mole. Multiply these two numbers and the moles will cancel giving you grams.
Setting up a dimension analysis type of thing helps tremendously. See what you have to cancel in order to get what you want. We canceled the atoms, then we canceled the moles, and then we got grams.
Answer:
soilds - close together arranged in a regular way
liquids - close together arranged in a random way
gases - far apart arranged in a random way
Explanation:
Answer:
Phosphagen provides the needed energy for the muscle tissues which can not be immediately supplied by glycolysis or oxidative phosphorylation. They supply immediate but limited energy as sudden demands for lots of energy by the muscle tissues arise.
Explanation:
Phosphagens are high energy storage compounds majorly found in muscular tissue of animals.
They allow maintenance of the high energy phosphate stores in its normal concentration ranges which discard the problems associated with ATP-consuming reactions in these tissues as against the presence of adenosine triphosphate.
The muscle tissues are actively working and need constant supply of energy and the energy produced by glycolysis and oxidative phosphorylation might not sum up to the needs of the tissues. So therefore, phosphagens serve as a stand by mechanism for energy production for the tissues mostly during sustained muscle activity.
The man, the muscle cells' phosphocreatinine concentration is more than three times the concentration of ATP and represent a ready reserve of high energy phosphate that can be donated directly to Adenosine diphosohate to release energy.
Different organisms use different biomolecule as a phosphagen. Majority of animals use arginine as their phosphagen, chordates use creatinine, annelids use lombricine.
They all perform these similar functions described above.
Answer:
Explanation:
Electrons are transferred from atoms of sodium to atoms of phosophorus. This transfer makes the sodium atoms positive and the phosphorus atoms negative. As a result, the sodium and phosphorus atoms strongly attract each other.