The answer is a property of density. The higher the density, the higher the pressure at the bottom.
Pressure = mass / Area. So given that the 4 samples occupy the same area at the bottom, the mass is going to be the determining factor. Per given volume, mercury has the largest mass. The answer is A
Explanation:
charles law V1/T1 =V2/T2
560 x 673 =V2/973
376880 = V2/973
V2 = 376880 x 973 = 366704240mL
Answer:

Explanation:
We can solve this problem by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between its mass and its acceleration:

where
F is the net force on the object
m is its mass
a is its acceleration
In this problem:
F = 40 N is the force on the object
m = 2 kg is its mass
Therefore, the acceleration of the object is

Answer:
769,048.28Joules
Explanation:
A parachutist of mass 56.0 kg jumps out of a balloon at a height of 1400 m and lands on the ground with a speed of 5.10 m/s. How much energy was lost to air friction during this bump
The energy lost due to friction is expressed using the formula;
Energy lost = Potential Energy + Kinetic Energy
Energy lost = mgh + 1/2mv²
m is the mass
g is the acceleration due to gravity
h is the height
v is the speed
Substitute the given values into the formula;
Energy lost = 56(9.8)(1400) + 1/2(56)(5.10)²
Energy lost = 768,320 + 728.28
Energy lost = 769,048.28Joules
<em>Hence the amount of energy that was lost to air friction during this jump is 769,048.28Joules</em>