Answer:
The fireman will continue to descend, but with a constant speed.
Explanation:
In kinetic friction <em>(which is the case discussed here) </em>since the fireman is already in motion because of a certain force, once the frictional force matches the normal force, the fireman will stop accelerating and continue moving at a constant rate with the original speed he had. We will need a force greater than the normal force acting on the fireman to cause a deceleration.
We need to understand the difference between static friction and kinetic friction.
Static friction occurs in objects that are stationary, while kinetic friction occurs in objects that are already in motion.
In static friction, when the frictional force matches the weight or normal force of the object, the object remains stationary.
While in kinetic friction, when the frictional force matches the normal force, the object will stop accelerating. This is the case of the fireman sliding down the pole as discussed above.
The football and air resistance between contact
The pressure will 14. 0 g of co exert in a 3. 5 l container at 75°c is 4.1atm.
Therefore, option A is correct option.
Given,
Mass m = 14g
Volume= 3.5L
Temperature T= 75+273 = 348 K
Molar mass of CO = 28g/mol
Universal gas constant R= 0.082057L
Number of moles in 14 g of CO is
n= mass/ molar mass
= 14/28
= 0.5 mol
As we know that
PV= nRT
P × 3.5 = 0.5 × 0.082057 × 348
P × 3.5 = 14.277
P = 14.277/3.5
P = 4.0794 atm
P = 4.1 atm.
Thus we concluded that the pressure will 14. 0 g of co exert in a 3. 5 l container at 75°c is 4.1atm.
learn more about pressure:
brainly.com/question/22613963
#SPJ4
The answer here would be infrared waves. Hot objects and humans give off heat in the form of infrared light, thermal imaging technology in the goggles enable them to catch this light emitted by these objects
Answer:
You can change the momentum of an object by giving the object more force or less force.
Explanation:
Think about a ball. It is going slow, you push it and you give it more momentum.