In analytical geometry, there are already derived equations to find the distance of lines and points as well as the angle made between two lines. As special case is when the other line is one of the coordinate axis. Then, the formula can be simplified to
tan θ =m, where m is the slope of the equation
In the next step, we also incorporate operations of calculus. Since the slope is equal to Δy/Δx, this is equivalent to dy/dx in calculus. Therefore, you can find the slope by differentiating the equation in terms of x.
<span>y-2x=7
y = 2x+7
dy/dx = 2 =m
So,
tan </span>θ = 2
θ = tan⁻¹(2)
θ = 63.43°
Answer: We should order 40 dining room tables type “A” and 90 dining room tables type “B” if we want to minimize our cost.
Please, see the attached files.
Thanks.
Answer:
false
Step-by-step explanation:
an integer is any number greater or less than 0
X+y=3
Subtract x from both sides
y=-x+3
Substitute
2x--x+3=6
2x+x+3=6
3x+3=6
Subtract 3 from both sides
3x=3
Divide both sides by 3
x=1
<h3>
Answer: Max height = 455.6 feet</h3>
========================================================
Explanation:
The general equation
y = ax^2 + bx + c
has the vertex (h,k) such that
h = -b/(2a)
In this case, a = -16 and b = 147. This means,
h = -b/(2a)
h = -147/(2*(-16))
h = 4.59375
The x coordinate of the vertex is x = 4.59375
Plug this into the original equation to find the y coordinate of the vertex.
y = -16x^2+147x+118
y = -16(4.59375)^2+147(4.59375)+118
y = 455.640625
The vertex is located at (h,k) = (4.59375, 455.640625)
The max height of the rocket occurs at the vertex point. Therefore, the max height is y = 455.640625 feet which rounds to y = 455.6 feet