Answer:
![\left[\begin{array}{ccc}1&0.05&0.05\\0.05&1&0\\0.4&0.4&1\end{array}\right] *\left[\begin{array}{c} x_1\\x_2\\x_3\end{array}\right] = \left[\begin{array}{c} 3000\\3000\\24000\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260.05%260.05%5C%5C0.05%261%260%5C%5C0.4%260.4%261%5Cend%7Barray%7D%5Cright%5D%20%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%20x_1%5C%5Cx_2%5C%5Cx_3%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%203000%5C%5C3000%5C%5C24000%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given:
- Profits earned = $ 60, 000
- Bonus after tax = 5%
- State tax after bonus is = 5%
- Federal tax after bonus and state tax is = 40%
Find:
A linear equation system to find the amounts paid in bonuses, state tax, and federal tax.
Solution:
Define variables:
- x_1 : amount paid for bonuses
- x_2: amount paid for state tax
- x_3: amount paid for federal tax
- Since bonuses are paid after taxes at 5 %:
x_1 = 0.05(60,000 - x_2 - x_3)
3000 = x_1 + 0.5x_2 + 0.5x_3
- State taxes are paid after bonuses:
x_2 = 0.05*(60000 - x_1)
x_2 + 0.05x_2 = 3000
- Finally federal tax are paid:
x_3 = 0.4*(60,000 - x_1 - x_2)
x_3 + 0.4x_2 + 0.4x_3 = 24,000
- Therefore the system is:
x_1 + 0.5x_2 + 0.5x_3= 3000
x_2 + 0.05x_2 = 3000
x_3 + 0.4x_2 + 0.4x_3 = 24,000
Therefore the system can be expressed as an equation below:
![\left[\begin{array}{ccc}1&0.05&0.05\\0.05&1&0\\0.4&0.4&1\end{array}\right] *\left[\begin{array}{c} x_1\\x_2\\x_3\end{array}\right] = \left[\begin{array}{c} 3000\\3000\\24000\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260.05%260.05%5C%5C0.05%261%260%5C%5C0.4%260.4%261%5Cend%7Barray%7D%5Cright%5D%20%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%20x_1%5C%5Cx_2%5C%5Cx_3%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%203000%5C%5C3000%5C%5C24000%5Cend%7Barray%7D%5Cright%5D)