Answer:

Explanation:
Here we know that for the given system of charge we have no loss of energy as there is no friction force on it
So we will have


now we know when particle will reach the closest distance then due to electrostatic repulsion the speed will become zero.
So we have



so distance moved by the particle is given as



Answer:
a = 2.72 [m/s2]
Explanation:
To solve this problem we must use the following kinematics equation:

where:
Vf = final velocity = 1200 [km/h]
Vo = initial velocity = 25 [km/h]
t = time = 2 [min] = 2/60 = 0.0333 [h]
1200 = 25 + (a*0.0333)
a = 35250.35 [km/h2]
if we convert these units to units of meters per second squared
![35250.35[\frac{km}{h^{2} }]*(\frac{1}{3600^{2} })*[\frac{h^{2} }{s^{2} } ]*(\frac{1000}{1} )*[\frac{m}{km} ] = 2.72 [\frac{m}{s^{2} } ]](https://tex.z-dn.net/?f=35250.35%5B%5Cfrac%7Bkm%7D%7Bh%5E%7B2%7D%20%7D%5D%2A%28%5Cfrac%7B1%7D%7B3600%5E%7B2%7D%20%7D%29%2A%5B%5Cfrac%7Bh%5E%7B2%7D%20%7D%7Bs%5E%7B2%7D%20%7D%20%5D%2A%28%5Cfrac%7B1000%7D%7B1%7D%20%29%2A%5B%5Cfrac%7Bm%7D%7Bkm%7D%20%5D%20%3D%202.72%20%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D)
Answer:
E = - dV / dx
Explanation:
The equipotential lines are lines or surfaces that have the same power, therefore we can move in them without carrying out work between equipotential lines, work must be carried out, therefore the electric field changes.
The electric field and the potential are related by
E = - dV / dx
therefore when the change is faster, that is, the equipotential lines are closer, the greater the electric field must be.
Answer: Convergent or Divergent boundaries
Explanation:
Divergent boundaries occur along spreading centers where plates are moving apart and new crust is created by magma pushing up from the mantle. Picture two giant conveyor belts, facing each other but slowly moving in opposite directions as they transport newly formed oceanic crust away from the ridge crest.