Answer:
d
Explanation:
Solution:-
- The Quantity of theory of money states:
M * V = P * Y
Where,
M = Money supply
V = Velocity of money exchange
P = The price level
Y = Real GDP
- By re-arranging the formula and solving for "V" we have:
V = P*Y / M
- The expression on right hand side increases if exchange of dollars increases.
Answer:
She covers the distance is 12 km.
The magnitude of displacement is 8.6 km.
The direction of her displacement is north east.
Explanation:
Given that,
Christina drives his moped 7 kilometers North and stop for lunch and then drive 5 km east.
We need to calculate the total distance
Using formula of distance

Put the value into the formula


We need to calculate the magnitude of displacement
Using formula of displacement




The direction of her displacement is north east.
Hence, She covers the distance is 12 km.
The magnitude of displacement is 8.6 km.
The direction of her displacement is north east.
Answer:
2100 J
Explanation:
Parameters given:
Force acting on the object, F = 420 N
Distance moved by object, d = 5m
The change in kinetic energy of an object is equal to the work done by a force acting on the object:
W = F * d
∆KE = F * d
∆KE = 420 * 5
∆KE = 2100 J
Explanation:
It is given that,
Mass of person, m = 70 kg
Radius of merry go round, r = 2.9 m
The moment of inertia, 
Initial angular velocity of the platform, 
Part A,
Let
is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :

Here, 


Solving the above equation, we get the value as :

Part B,
The initial rotational kinetic energy is given by :



The final rotational kinetic energy is given by :



Hence, this is the required solution.
Answer:
1) 1.31 m/s2
2) 20.92 N
3) 8.53 m/s2
4) 1.76 m/s2
5) -8.53 m/s2
Explanation:
1) As the box does not slide, the acceleration of the box (relative to ground) is the same as acceleration of the truck, which goes from 0 to 17m/s in 13 s

2)According to Newton 2nd law, the static frictional force that acting on the box (so it goes along with the truck), is the product of its mass and acceleration

3) Let g = 9.81 m/s2. The maximum static friction that can hold the box is the product of its static coefficient and the normal force.

So the maximum acceleration on the block is

4)As the box slides, it is now subjected to kinetic friction, which is

So if the acceleration of the truck it at the point where the box starts to slide, the force that acting on it must be at 136.6 N too. So the horizontal net force would be 136.6 - 108.3 = 28.25N. And the acceleration is
28.25 / 16 = 1.76 m/s2
5) Same as number 3), the maximum deceleration the truck can have without the box sliding is -8.53 m/s2