Oil is optically denser than water. When sound/light goes from optically denser medium to optically rarer medium, their velocity increase and they moves away for normal.
<h3>
<u>Appropriate</u><u> </u><u>Answer</u><u>:</u></h3>
The sound wave speeds up and bends

As, In optics we learnt that light undergoes refraction when travels from medium of different densities. Similarly, Sound also follows the law of refraction.
- It is due to the change of speed of water in different mediums, This makes it speed up or down depending upon the medium and their densities.
<u>━━━━━━━━━━━━━━━━━━━━</u>
Answer:
energy is equal to 1000 J
Explanation:
When the jumper is in the tent, he has a given height, this height gives him a gravitational potential energy, which forms his initial mechanical energy of 1000 J. After jumping, this energy is converted into elastic energy of the rope plus a remainder of potential energy gravitational, it does not reach the ground, but as the friction is negligible the total mechanical energy is conserved, therefore its energy is equal to 1000 J
This is a case of energy transformation, but the total value of mechanical energy does not change
The displacement of the object as determined from the velocity-time graph is 562.5 m.
<h3>What is a velocity-time graph?</h3>
A velocity-time graph is a graph of the velocity of an object plotted in the vertical or y-axis of the graph against the time taken on the horizontal or x-axis.
The displacement of an object can be obtained from its velocity-time graph by calculating the total area under the graph.
The total area under the graph = area of triangle + area of rectangle
Area of triangle = b*h/2 =
Area of triangle = 25 * (35 - 10)/2 = 312.5 m
Area of rectangle = l * b
Area of rectangle = 10 * 25 = 250 m
Total area = (312.5 + 250) m
Total area = 562.5 m
Therefore, the displacement of the object is 562.5 m
In conclusion, the total area of a velocity-time graph gives the displacement.
Learn more about velocity-time graph at: brainly.com/question/28064297
#SPJ1
As we know that electrostatic force between two charges is given as

here we know that electrostatic repulsion force is balanced by the gravitational force between them
so here force of attraction due to gravitation is given as

here we can assume that both will have equal charge of magnitude "q"
now we have



now we have

Answer:
Onda electromagnética
Explanation:
Las ondas mecánicas requieren un medio material para la propagación, mientras que las ondas electromagnéticas no requieren un medio material para la propagación.
Generalmente, las ondas electromagnéticas se mueven con una velocidad muy alta.
Todas las ondas electromagnéticas se denominan colectivamente luz y tienen una velocidad común de 3 × 10 ^ 8 m / s en el aire.
Ninguna onda mecánica tiene una velocidad tan alta en el aire.