It's 4 and u should know that by now.
Step-by-step explanation:
Given that,
BC = 8
Ac = 15
We can find AB using the pythagoas theorem.

We know that,
, B is base and H is Hypotenuse

Hence, this is the required solution.
The functions are illustrations of composite functions.
<em>The soil temperature at 2:00pm is 67</em>
The given parameters are:
---- the function for sun intensity
-- the function for temperature
At 2:00pm, the value of h (number of hours) is:


Substitute 8 for h in
, to calculate the sun intensity



Substitute 8/9 for I in
, to calculate the temperature of the soil



Approximate

Hence, the soil temperature at 2:00pm is 67
Read more about composite functions at:
brainly.com/question/20379727
Given:
A man owns 3/4 of the share of a business and sells 1/3 of his shares for Bir 10,000.
To find:
The value of the business in Bir.
Solution:
Let x be the value of the business.
It is given that a man owns 3/4 of the share of a business and sells 1/3 of his shares for Bir 10,000.


Multiply both sides by 4.


Therefore, the value of the business is 40,000 Bir.
Answer:
Step-by-step explanation:
Given:
u = 1, 0, -4
In unit vector notation,
u = i + 0j - 4k
Now, to get all unit vectors that are orthogonal to vector u, remember that two vectors are orthogonal if their dot product is zero.
If v = v₁ i + v₂ j + v₃ k is one of those vectors that are orthogonal to u, then
u. v = 0 [<em>substitute for the values of u and v</em>]
=> (i + 0j - 4k) . (v₁ i + v₂ j + v₃ k) = 0 [<em>simplify</em>]
=> v₁ + 0 - 4v₃ = 0
=> v₁ = 4v₃
Plug in the value of v₁ = 4v₃ into vector v as follows
v = 4v₃ i + v₂ j + v₃ k -------------(i)
Equation (i) is the generalized form of all vectors that will be orthogonal to vector u
Now,
Get the generalized unit vector by dividing the equation (i) by the magnitude of the generalized vector form. i.e

Where;
|v| = 
|v| = 
= 
This is the general form of all unit vectors that are orthogonal to vector u
where v₂ and v₃ are non-zero arbitrary real numbers.