Answer:
lipid
Explanation:
I just know the answer i don't really have a explanation sorry
An incandescent bulb becomes hotter than a fluorescent bulb when turned on because in a regular incandescent bulb, there is tungsten wire where electricity is converts into heat. A regular incandescent light bulb requires 4 times more energy than a fluorescent bulb in order to produce the same amount of light. The conversion is such that for a 75-watt bulb, temperature get raised to approximately 2000 K. For such a high temperature, the radiating energy from the wire have some visible light. In such bulbs, 90% of the electricity get consumed in producing heat and only 10% produces light thus, they are not much efficient source of light.
On the other hand, fluorescent bulbs produce light with less amount of heat. In them, 40% of electricity is consumed in producing light and 60% in heat which is very less as compared to heat produced by a incandescent bulb. This is because when it get turned on, mercury atoms inside the bulb collides with electrons and produce UV light which is then converted into visible light using thin layer of phosphor power present inside the bulb. This produces low amount of heat thus, the bulb stays cooler, the bigger size of bulb also helps in dispersing heat.
Therefore, a fluorescent light bulb is not as hot as an incandescent light bulb.
Answer:
Equilibrium constant is 0.4
Explanation:
We propose the equilibrium:
PCl₅(g) ⇄ PCl₃(g) + Cl₂(g)
Initially 0.72 mol
We have the 0.72 moles of the PCl₅.
React x x x
X amount has reacted, so in the equilibrium we have:
0.72 - x 0.4 0.4
If we initially have 0.72 moles and we have 0.4 moles at the equilibrium, it means that 0.3 moles has been reacted.
Let's make the expression for Kc:
Kc = [PCl₃] . [Cl₂] / [PCl₅]
Kc = 0.4 . 0.4 / 0.4
Kc = 0.4
Answer:
Mass, gravitational force and height
Explanation:
Potential energy of body is the energy at rest in a body and it depends on the mass, acceleration due to gravity and height of a body;
Potential energy = mass x gravity x height = mgh
The more the mass, gravity and height of a body, the higher the potential energy a body will posses. This is why a stone at a height has more potential energy than one on the ground.