Answer:
A) Dilute the unknown so that it will have an absorbance within the standard curve. Once the diluted unknown concentration is determined, the full strength concentration can be calculated if the dilution process is recorded. Beer's law only applies to dilute solutions, so diluting the unknown is better than making new standards.
Explanation:
Beer's law states that <em>absorbance is proportional to the concentrations of the absorbing species</em>. This is verified in the case of diluted solutions (0≤0.01 M) of most substances. <u>As a solution gets more concentrated, solute molecules interact between themselves because of their proximity. </u>When a molecule interacts with another, the change in their electric properties (including absorbance) is probable. That's why <u>the plot of absorbance versus concentration stops being a straight line</u>, and <u>Beer's law is no longer valid.</u>
Therefore, if the absorbance value is higher than the highest standard, dilutions should be made. Once this concentration is determined, the full strength concentration can be calculated with the inverse of the dilution.
The correct answer for, An element with the smallest anionic (negative-ionic) radius would be found on the periodic table in, is <span>Group 17, Period 2.</span>
Answer:
Explanation:
If we look at the structure of 1-Bromopropane; we will see that it is a derivative of alkane family by the the substitution of an alkyl group. The position of the Bromine in the propane is 1, making 1-Bromopropane a primary alkyl-halide.
Primary alkyl - halide undergo SN2 mechanism. This nucleophilic reaction needs to be a strong alkyl halide , such as 1-Bromopropane used otherwise it will result to a reactive mechanism if a weak electrophile is used.
However, the critical and the main objective here is to Draw the major substitution product if the reaction proceeds in good yield. If no reaction is expected or yields will be poor, draw the starting material in the box. If a charged product is formed, be sure to draw the counterion.
The attached diagrams portraying this notions is shown in the attached file below.
Answer:
Option D is correct = 8.12 grams of NaCl
Explanation:
Given data:
Moles of sodium chloride = 0.14 mol
Mass of sodium chloride = ?
Solution:
Formula:
Number of moles = mass of NaCl / Molar mass of NaCl
Molar mass of NaCl = 58 g/mol
Now we will put the values in formula.
0.14 mol = Mass of NaCl / 58 g/mol
Mass of NaCl = 0.14 mol × 58 g/mol
Mass of NaCl = 8.12 g of NaCl
Thus, 0.14 moles of NaCl contain 8.12 g of NaCl.