Answer:
3.6
Explanation:
Step 1: Given data
- Concentration of formic acid: 0.03 M
- Concentration of formate ion: 0.02 M
- Acid dissociation constant (Ka): 1.8 × 10⁻⁴
Step 2: Calculate the pH
We have a buffer system formed by a weak acid (HCOOH) and its conjugate base (HCOO⁻). We can calculate the pH using the <em>Henderson-Hasselbach equation</em>.
![pH = pKa +log\frac{[base]}{[acid]} = -log 1.8 \times 10^{-4} + log \frac{0.02}{0.03} = 3.6](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2Blog%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%3D%20-log%201.8%20%5Ctimes%2010%5E%7B-4%7D%20%2B%20log%20%5Cfrac%7B0.02%7D%7B0.03%7D%20%3D%203.6)
Answer:
Double replacement reaction
Explanation:
Now, let us first write the reaction equation properly:
H₂SO₄ + 2KOH ⇒ K₂SO₄ + 2H₂O
The above reaction is a neutralization reaction between an acid and a base whose product gives salt and water only at most instances.
From here, we can observe that the species displaces on another in their ionic state. Hydrogen replaces potassium and water is produced. Potassium combines chemically with sulfate ions to give the salt of potassium.
Answer: Isoelectronic means having the same numbers of electrons or the same electronic structure.
Explanation:
Answer:
A chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and plus and minus signs.
Explanation:
The fist one on the fist page is a students walking home at the same pace because the line goes straight